Reformulation for Adjustable Robust Optimization with discrete uncertainty

Henri Lefebvre, Enrico Malaguti and Michele Monaci

University of Bologna, DEI

Capacitated Facility Location Problem...

- Objective: decide where to open facilities
- Constraints:
 - sites (rectangles) have limited capacities q_i
 - clients (circles) must be served entirely or not at all
- Minimize:

"Opening costs"
$$+$$
 "Transportation costs" $-$ "Profit" $q_1=143$ $q_3=74$ $\boxed{1}$ $f_1=1286$ $\boxed{3}$ $f_3=867$ $\boxed{7}$ $\boxed{6}$ $\boxed{7}$ $\boxed{3}$ $\boxed{4}$ $\boxed{6}$ $\boxed{4}$ $\boxed{94}$ $\boxed{106}$ $\boxed{106}$ $\boxed{114}$ $\boxed{4}$ $\boxed{94}$ $\boxed{94}$ $\boxed{106}$ $\boxed{94}$ $\boxed{116}$ $\boxed{94}$ \boxed

...with Uncertain Demand

• **Assumption**: at most Γ clients change their demand

Figure: CFLP instance

Figure: No client change demand $(\Gamma = 0)$

Figure: At most one client change demand $(\Gamma = 1)$

2

Figure: At most two clients change demand ($\Gamma = 2$)

In gray, sites in which it is optimal to open a facility.

Adjustable Robust Optimization

- Decision $x \in X$ must be taken here and now
- Uncertain parameters $m{H} \in \mathcal{H} = \{\hat{m{H}}^1,...,\hat{m{H}}^L\}$
- Possibility to adjust later, in a wait-and-see phase

Assumptions

- (MILP first stage) $X \subseteq \mathbb{R}^{n_X}$
- (Discrete uncertainty) For all coefficient h_{ii} ,

$$h_{ij} = \underline{h}_{ij} ext{ or } h_{ij} = \overline{h}_{ij}$$

(only two values is wlog)

• (MILP second stage) $\forall x \in X$, $\forall \hat{H} \in \mathcal{H}$,

$$Y(oldsymbol{x},\hat{oldsymbol{H}}) = \left\{oldsymbol{y} \in Y: oldsymbol{T}oldsymbol{x} + \hat{oldsymbol{H}}oldsymbol{y} \leq oldsymbol{f}
ight\}$$
 ith $Y \subseteq \mathbb{R}^{n_Y}$

Main Result: "constraint uncertainty = objective uncertainty"

$$\min_{x \in X} \max_{\xi \in \Xi} \min_{y \in Y(x,\xi)} f(x,y) = \min_{x \in X} \max_{\xi \in \Xi} \min_{(y,z) \in \widetilde{Y}(x)} \widetilde{f}(x,y,z,\xi)$$

A six-step reformualtion

(1) Binary encoding

ullet Introduce $\xi_{\it ij} \in \{0,1\}$ such that $\xi_{\it ij} = 1$ iff $h_{\it ij} = ar{h}_{\it ij}$

$$\sum_{j=1}^{n_X} t_{ij} \, \hat{x}_j + \sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\overline{h}_{ij} - \underline{h}_{ij}) \, \hat{\xi}_{ij} \, y_j \right) \leq f_i$$

(2) Extended space

- Linearize! Introduce $z_{ij} = \xi_{ij} y_j$
 - $z_{ij} \leq y_j$ $z_{ij} \geq y_j (1 \xi_{ij})u_j$ $z_{ij} \geq 0$
- " $z_{ij} \leq u_j \xi_{ij}$ " can be omitted by optimality

(3) Convexification

• Define $\widetilde{Y}(x)$ as the set of (y,z) with $y \in Y$ and,

$$\begin{cases} \sum_{j=1}^{n_X} t_{ij} \, \hat{x}_j + \sum_{j=1}^{n_Y} \left(\underline{h}_{ij} y_j + (\overline{h}_{ij} - \underline{h}_{ij}) \, z_{ij} \right) \leq f_i \\ 0 \leq z_{ij} \leq y_j \end{cases}$$

Then,

$$\min_{oldsymbol{y} \in Y(oldsymbol{x}, oldsymbol{\xi})} oldsymbol{d}^T oldsymbol{y} = \min_{egin{array}{c} (oldsymbol{y}, oldsymbol{z}) \in \operatorname{conv}\left(\widetilde{Y}(oldsymbol{x})
ight) \ (1-\xi_{ij})u_j \geq y_j - z_{ij} \end{array}$$

(4) Dualization

By duality, the second stage is equivalent to

$$\max_{\boldsymbol{\lambda} \leq 0} \min_{(\boldsymbol{y}, \boldsymbol{z}) \in \widetilde{Y}(\boldsymbol{x})} \left\{ \sum_{j=1}^{n_Y} d_j y_j + \sum_{i=1}^{m_Y} \sum_{j=1}^{n_Y} \lambda_{ij} ((1 - \xi_{ij}) u_j + z_{ij} - y_j) \right\}$$

(5) Re-writing

Re-arrange the terms

$$\sum_{j=1}^{n_Y} d_j y_j + \sum_{i=1}^{n_Y} \left(\sum_{j: \xi_{ij} = 0} \lambda_{ij} (u_j + z_{ij} - y_j) + \sum_{j: \xi_{ij} = 1} \lambda_{ij} (z_{ij} - y_j) \right)$$

- " $(u_j + z_{ij} y_j)$ " is always non-negative
- In turn, we can re-write the second-stage problem,

$$\max_{\lambda \leq 0} \min_{(\boldsymbol{y}, \boldsymbol{z}) \in Z'(\boldsymbol{x})} \sum_{j=1}^{n_Y} \left(d_j y_j + \sum_{i=1}^{m_Y} \lambda_{ij} \xi_{ij} (z_{ij} - y_j) \right)$$

(6) Fixation

- Variables $\lambda_{ij} \leq 0$ can be replaced by a sufficiently small value $\underline{\lambda}_{ij}$ (big-M approach)
- ullet For downward monotone second stage, $\underline{\lambda}_{ij}=d_j$
- Examples: MKP, CFLP, $1|r_j|\sum w_jU_j$, ...

A cut-generation LB problem

• Note that $\min_{x} \max_{\xi} \min_{(y,z)} \ge \max_{\xi} \min_{(x,y,z)}$

• Let
$$(x^1, y^1, z^1), ..., (x^H, y^H, z^H) \in W$$
 with $W = \{(x, y, z) : x \in X, (y, z) \in \widetilde{Y}(x)\}$

The following problem is lower bounding

$$\max \theta$$

s.t. $\theta \leq \widetilde{f}(x, y, z, \xi) \quad h = 1, ..., H$

with $\widetilde{f}(x,y,z,oldsymbol{\xi})=oldsymbol{d}^Ty+\sum_{i=1}^{m_Y}\lambda_{ij}\xi_{ij}(z_{ij}-y_j)$

• We can solve this by cut generation!

Asymptotic convergent B&B

- Branch on $\bar{\boldsymbol{x}} = \frac{1}{H} \sum_{h=1}^{H} \boldsymbol{x}^h$
- Finite convergence if $X \subseteq \{0,1\}^{n_X}$
- Spatial branching on continuous variables
- Generalizes the approach from [1]

Experimental results (CFLP)

ullet μ is the ratio "total capacity over demand"

			$\mu=1.5$		$\mu = 2.0$	
sites	clients	Γ	opt	time	opt	time
6	12	2	16	0.9	16	0.8
		4	16	20.6	16	29.5
		6	16	117.9	15	107.0
8	16	2	16	3.5	16	2.8
		4	15	367.4	15	173.9
		6	5	143.7	11	845.5
10	20	2	16	9.4	16	6.4
		4	11	752.1	14	549.3
		6	3	1150.2	7	1123.1
12	24	2	16	18.6	16	15.7
		4	9	1277.1	5	797.1
		6	2	708.7	1	2173.8

Table: Computational results on CFLP instances

References

[1] N. Kämmerling and J. Kurtz.

Oracle-based algorithms for binary two-stage robust optimization.

Computational Optimization and Applications, 77(2):539–569, 2020.