A Cheatsheet on Matrix Computations

Table of Contents

    Inequalities

    (Cauchy-Schwarz) Let \( u \) and \( v \) be arbitrary vectors in an inner product space over the scalar field \( \mathbb R \) or \( \mathbb C \). Then, $$ |x^\top y| \le \lVert x \rVert \lVert y \rVert $$ with equality holding if and only if \( u \) and \( v \) are linearly dependent.
    Proof Available on the Cauchy–Schwarz inequality Wikipedia page.
    Let \( A\in\mathbb R^{m\times n} \) be a given full-rank matrix. Then, for any \( x\in\mathbb R^n \), $$ \sigma_{\min}(A) \lVert x \rVert \le \lVert Ax \rVert $$

    Derivatives

    Rows and Columns

    Let \( \mathbf{A}\in\mathbb{R}^{m\times n} \), \(\mathbf{b}\in\mathbb{R}^{m\times 1} \) and \( \mathbf{c}\in\mathbb{R}^{n\times 1} \). We denote by \( \ a_{ij} \) the \( (i,j) \)-th component of \( \mathbf{A} \), by \( \mathbf{a}^{(j)} \) its \( j \)-th column and by \( \mathbf{a}_{(i)} \) its \( i \)-th row. Vector \( \mathbf{e}^{(j)} \) (resp. \( \mathbf{e}_{(j)} \)) denote the \( j \)-th column (resp. the \(i\)-th row) of the identity matrix.