A Cheatsheet on Primal-Dual Problems
 
    Table of Contents
    
        
General Convex Problems
    (Fenchel Duality)
    Consider the optimization problem
    $$
        \begin{array}{rl} 
            \displaystyle \min_x \quad & f(x) \\
            \text{s.t.} \quad & g(x) \le 0, \\
            & h(x) = 0.
        \end{array}
    $$
    Its dual problem is
    $$
        \begin{array}{rl} 
            \displaystyle \max_{\lambda, \mu} \quad & - ( f + \lambda^\top g + \mu^\top h )^*(0) \\
            \text{s.t.} \quad & \lambda\ge 0,
        \end{array}
    $$
    which, assuming \( h(x) := Ax - b \), can be re-written as
    $$
        \begin{array}{rl} 
            \displaystyle \max_{\lambda,\mu,u} \quad & \displaystyle -f^*(u^0) - \sum_{i=1}^m \lambda_i g_i^*\left( \frac{u^i}{\lambda_i} \right) + b^\top \mu \\
            \text{s.t.} \quad & \displaystyle  \sum_{i=0}^m u^i + A^\top\mu = 0, \\
            & \lambda\ge 0.
        \end{array} 
    $$
Quadratic Optimization
    (QP Duality)
    Consider the QP 
    $$
        \begin{align} 
            \min_x \quad & \frac 12 x^\top Q x + c^\top x \\
            \text{s.t.} \quad & Ax = b, \\
            & x\ge 0.
        \end{align}
    $$
    Its dual problem is 
    $$
        \begin{align} 
            \max_{x,\lambda,\mu} \quad & b^\top \lambda - \frac 12 x^\top Q x \\
            \text{s.t.} \quad & A^\top \lambda + \mu = c + Qx, \\
            & \mu\ge 0.
        \end{align}
    $$
    If, moreover, \( Q \) is invertible, the dual can be re-written as 
    $$
        \begin{align} 
            \max_{\lambda, \mu} \quad & b^\top \lambda - (A^\top\lambda + \mu - c)^\top Q (A^\top\lambda + \mu - c) \\
            \text{s.t.} \quad & \mu \ge 0.
        \end{align}
    $$
Conic Optimization
    (Conic Duality)
    Consider the conic problem
    $$
        \begin{array}[t]{rl}
            \displaystyle \min_x \quad & c^\top x \\
            \textrm{s.t.} \quad & Ax - b \in K.
        \end{array}
    $$
    Its dual problem is 
    $$
        \begin{array}[t]{rl}
            \displaystyle \max_\lambda \quad & b^\top \lambda \\
            \textrm{s.t.} \quad & A^\top \lambda = c \\
            & \lambda\in K^*,
        \end{array}
    $$
    in which \(K^*\) denotes the dual cone of \( K \).
     Henri Lefebvre, PhD
                Henri Lefebvre, PhD