A Cheatsheet on Primal-Dual Problems

Table of Contents
General Convex Problems
(Fenchel Duality)
Consider the optimization problem
$$
\begin{array}{rl}
\displaystyle \min_x \quad & f(x) \\
\text{s.t.} \quad & g(x) \le 0, \\
& h(x) = 0.
\end{array}
$$
Its dual problem is
$$
\begin{array}{rl}
\displaystyle \max_{\lambda, \mu} \quad & - ( f + \lambda^\top g + \mu^\top h )^*(0) \\
\text{s.t.} \quad & \lambda\ge 0,
\end{array}
$$
which, assuming \( h(x) := Ax - b \), can be re-written as
$$
\begin{array}{rl}
\displaystyle \max_{\lambda,\mu,u} \quad & \displaystyle -f^*(u^0) - \sum_{i=1}^m \lambda_i g_i^*\left( \frac{u^i}{\lambda_i} \right) + b^\top \mu \\
\text{s.t.} \quad & \displaystyle \sum_{i=0}^m u^i + A^\top\mu = 0, \\
& \lambda\ge 0.
\end{array}
$$
Quadratic Optimization
(QP Duality)
Consider the QP
$$
\begin{align}
\min_x \quad & \frac 12 x^\top Q x + c^\top x \\
\text{s.t.} \quad & Ax = b, \\
& x\ge 0.
\end{align}
$$
Its dual problem is
$$
\begin{align}
\max_{x,\lambda,\mu} \quad & b^\top \lambda - \frac 12 x^\top Q x \\
\text{s.t.} \quad & A^\top \lambda + \mu = c + Qx, \\
& \mu\ge 0.
\end{align}
$$
If, moreover, \( Q \) is invertible, the dual can be re-written as
$$
\begin{align}
\max_{\lambda, \mu} \quad & b^\top \lambda - (A^\top\lambda + \mu - c)^\top Q (A^\top\lambda + \mu - c) \\
\text{s.t.} \quad & \mu \ge 0.
\end{align}
$$
Conic Optimization
(Conic Duality)
Consider the conic problem
$$
\begin{array}[t]{rl}
\displaystyle \min_x \quad & c^\top x \\
\textrm{s.t.} \quad & Ax - b \in K.
\end{array}
$$
Its dual problem is
$$
\begin{array}[t]{rl}
\displaystyle \max_\lambda \quad & b^\top \lambda \\
\textrm{s.t.} \quad & A^\top \lambda = c \\
& \lambda\in K^*,
\end{array}
$$
in which \(K^*\) denotes the dual cone of \( K \).