Table of content

    A Two-stage Robust Approach for Minimizing the Weighted Number of Tardy Jobs with Objective Uncertainty

    Reading instances

    The CSV file

    All our results can be found in the CSV file results.csv which contains the following rows and columns.

    all_results = read.csv("results.csv", na.strings = "")

    Here, columns have the following inerpretation:

    • instance: instance file name ;
    • problem: 1 if the row relates to problem \((\mathcal P)\), 2 if it relates to problem \((\widetilde{\mathcal P})\) ;
    • approach: the approach used for solving the instance,
      • For problem \((\mathcal P)\), possible values are “colgen, kadapt-a, kadapt-b” (in the paper: ColGen1, KAdapt1-a, KAdapt1-b) ;
      • For problem \((\widetilde{\mathcal P})\), possible values are “colgen, colgen-ext, kadapt-a” (in the paper: ColGen2, ColGen3, KAdapt2)
    • n_jobs: the number of jobs ;
    • gamma: the value for \(\Gamma\) ;
    • k: when using a \(K\)-adaptability approach, the value for \(K\) ;
    • cpu: the CPU time needed to sovle the instance (3600 if the time-limit is reached) ;
    • objective: the best objective value found (i.e., optimal if cpu < 3600) ;
    • n_active_col: when the column generation approach is used, the number of active columns ;
    • quality: the solution quality,
      • When column generation is used, possible values are “Optimal, TimeLimitFeasible, TimeLimitInfeasible” ;
      • When \(K\)-adaptability is used, possible values are “Optimal, Time Lim, Mem Lim”.
    • gap: the remaining optimality gap after 1 hour of computation ;
    • rule_for_branching: when the column generation approach is used, the variable selection rule which were used (possible values: “default, strong_branching”, i.e., most infeasible).
    all_results[all_results$cpu > 3600, ] = 3600
    problem1 = all_results[all_results$problem == 1,]
    problem2 = all_results[all_results$problem == 2,]
    create_approach = function(problem, approach) {
      result = problem[problem$approach == approach & problem$rule_for_branching == 'default',]
      result = result[,!names(result) %in% c("approach", "problem", "rule_for_branching", "quality", "n_active_col")]
      rownames(result) = NULL
      return (result)
    }
    colgen1 = create_approach(problem1, 'colgen')
    kadapt1_a = create_approach(problem1, 'kadapt-a')
    kadapt1_b = create_approach(problem1, 'kadapt-b')
    colgen2 = create_approach(problem2, 'colgen')
    colgen3 = create_approach(problem2, 'colgen-ext')
    kadapt2_a = create_approach(problem2, 'kadapt-a')
    kadapt2_b = create_approach(problem2, 'kadapt-b')

    Estimating \(K^*\) (finding \(\widehat{K}^*\))

    estimate_k_star = function(exact_method, k_adaptability) {
      
      # We first merge the exact method with the K-adaptability approach
      k_stars = merge(exact_method, k_adaptability, by = c("instance", "gamma"), all.y = TRUE)
      
      # We only keep those values of K which trigger the stopping condition
      k_stars = k_stars[
          # - (P_K)^* <= (P)^*, t(P) <= T, t(P_K) <= T
            (k_stars$objective.y <= k_stars$objective.x + 1e-3 & k_stars$time.x < 3600 & k_stars$time.y < 3600)
          |
          # - (P_K)^* <= (P)^*, t(P) > T, t(P_K) <= T
            (k_stars$objective.y <= k_stars$objective.x + 1e-3 & k_stars$time.x >= 3600 & k_stars$time.y < 3600)
          |
          # - t(P) <= P, t(P_K) > T
            (k_stars$time.x < 3600 & k_stars$time.y >= 3600)
          |
          # - t(P) > T, t(P_K) > T
            (k_stars$time.x >= 3600 & k_stars$time.y >= 3600)
        , 
          c("instance", "gamma", "k.y")
      ]
      
      # We rename k.y as k
      colnames(k_stars)[3] = "k"
      
      # Keep only the first (instance, gamma, k) which triggered the stopping criteria
      k_stars = k_stars[order(k_stars$instance, k_stars$gamma, k_stars$k),]
      k_stars = k_stars[!duplicated(( k_stars[,c("instance", "gamma")] )),]
      
      return (k_stars)
    }
    k_star1_a = estimate_k_star(colgen1, kadapt1_a)
    k_star1_b = estimate_k_star(colgen1, kadapt1_b)
    k_star2_a = estimate_k_star(colgen2, kadapt2_a)
    k_star2_b = estimate_k_star(colgen2, kadapt2_b)

    The \(\widehat{K}^*\)-adaptability

    create_optimal_kadapt = function(k_adaptability, k_star) {
      opt_kadapt = merge(k_adaptability, k_star, by = c("instance", "gamma", "k"))
      return(opt_kadapt)
    }
    opt_kadapt1_a = create_optimal_kadapt(kadapt1_a, k_star1_a)
    opt_kadapt1_b = create_optimal_kadapt(kadapt1_b, k_star1_b)
    opt_kadapt2_a = create_optimal_kadapt(kadapt2_a, k_star2_a)
    opt_kadapt2_b = create_optimal_kadapt(kadapt2_b, k_star2_b)

    Analysis

    Computational times

    compute_mean_times_by_group = function(data) {
      
      data = data[data$time < 3600,]
      
      mean_times = aggregate(data$time, list(data$n_jobs, data$gamma), mean)
      colnames(mean_times) = c("n_jobs", "gamma", "time")
      
      mean_times = mean_times[order(mean_times$n_jobs, mean_times$gamma),]
      rownames(mean_times) = NULL
      
      return(mean_times)
    }
    mean_times_colgen1 = compute_mean_times_by_group(colgen1)
    mean_times_kadapt1_a = compute_mean_times_by_group(opt_kadapt1_a)
    mean_times_kadapt1_b = compute_mean_times_by_group(opt_kadapt1_b)
    
    mean_times_colgen2 = compute_mean_times_by_group(colgen2)
    mean_times_colgen3 = compute_mean_times_by_group(colgen3)
    mean_times_kadapt2_a = compute_mean_times_by_group(opt_kadapt2_a)
    mean_times_kadapt2_b = compute_mean_times_by_group(opt_kadapt2_b)
    compute_number_unsolved_by_group = function(data) {
      unsolved = aggregate(data$time >= 3600, list(data$n_jobs, data$gamma), sum)
      colnames(unsolved) = c("n_jobs", "gamma", "unsolved")
      
      total = aggregate(data$instance, list(data$n_jobs, data$gamma), length)
      colnames(total) = c("n_jobs", "gamma", "total")
      
      unsolved$unsolved = unsolved$unsolved / total$total * 100
      
      unsolved = unsolved[order(unsolved$n_jobs, unsolved$gamma),]
      rownames(unsolved) = NULL
      
      return(unsolved)
    }
    unsolved_colgen1 = compute_number_unsolved_by_group(colgen1)
    unsolved_kadapt1_a = compute_number_unsolved_by_group(opt_kadapt1_a)
    unsolved_kadapt1_b = compute_number_unsolved_by_group(opt_kadapt1_b)
    
    unsolved_colgen2 = compute_number_unsolved_by_group(colgen2)
    unsolved_colgen3 = compute_number_unsolved_by_group(colgen3)
    unsolved_kadapt2_a = compute_number_unsolved_by_group(opt_kadapt2_a)
    unsolved_kadapt2_b = compute_number_unsolved_by_group(opt_kadapt2_b)
    compute_fastest_approach = function(t_colgen, t_kadapta, t_kadaptb) {
      
      fastest = merge(t_colgen, t_kadapta, by = c("instance", "gamma"))
      fastest = fastest[,c("instance", "gamma", "n_jobs.x", "time.x", "time.y")]
      colnames(fastest) = c("instance", "gamma", "n_jobs", "time_colgen", "time_kadapt_a")
      
      fastest = merge(fastest, t_kadaptb, by = c("instance", "gamma"))
      fastest = fastest[,c("instance", "gamma", "n_jobs.x", "time_colgen", "time_kadapt_a", "time")]
      colnames(fastest)[3] = "n_jobs"
      colnames(fastest)[6] = "time_kadapt_b"
      
      fastest$best_time = apply(fastest[,c("time_colgen", "time_kadapt_a", "time_kadapt_b")], 1, FUN = min)
      
      fastest$best_is_colgen = fastest$time_colgen == fastest$best_time
      fastest$best_is_kadapt_a = fastest$time_kadapt_a == fastest$best_time
      fastest$best_is_kadapt_b = fastest$time_kadapt_b == fastest$best_time
      
      return(fastest)
    }
    
    fastest1 = compute_fastest_approach(colgen1, opt_kadapt1_a, opt_kadapt1_b)
    fastest2 = compute_fastest_approach(colgen2, opt_kadapt2_a, opt_kadapt2_b)
    compute_fastest_approach_by_group = function(fastest) {
      
      fastest = aggregate(fastest[,c("best_is_colgen", "best_is_kadapt_a", "best_is_kadapt_b")], by = list(fastest$n_jobs, fastest$gamma), sum)
      
      fastest[,3:5] = fastest[,3:5] / rowSums(fastest[,3:5]) * 100
      
      colnames(fastest) = c("n_jobs", "gamma", "best_is_colgen", "best_is_kadapt_a", "best_is_kadapt_b")
      
      fastest = fastest[order(fastest$n_jobs, fastest$gamma),]
      rownames(fastest) = NULL
      
      return (fastest);
    }
    fastest_by_group1 = compute_fastest_approach_by_group(fastest1)
    fastest_by_group2 = compute_fastest_approach_by_group(fastest2)

    For problem \(({\mathcal P})\)

    Table41 = cbind(unsolved_kadapt1_a,
          unsolved_kadapt1_b$unsolved,
          unsolved_colgen1$unsolved,
          mean_times_kadapt1_a$time,
          mean_times_kadapt1_b$time,
          mean_times_colgen1$time,
          fastest_by_group1$best_is_kadapt_a,
          fastest_by_group1$best_is_kadapt_b,
          fastest_by_group1$best_is_colgen
        )
    Table 4.1
    Unsolved
    Time
    Fastest
    \(&amp;#124;\mathcal J&amp;#124;\) \(\Gamma\) KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1
    5 1 0 0 0 0 0 2 10 90 0
    5 2 0 1 0 0 0 2 4 96 0
    5 3 0 0 0 0 0 2 1 99 0
    10 1 6 12 0 85 59 13 11 76 12
    10 2 11 24 0 49 30 15 18 64 19
    10 3 5 10 0 17 1 11 5 85 10
    10 4 1 2 0 0 1 8 1 96 2
    10 5 1 2 0 7 0 7 1 96 2
    10 6 0 0 0 0 0 7 1 99 0
    10 7 0 0 0 0 0 7 1 99 0
    15 1 35 28 0 443 207 43 8 50 42
    15 2 57 69 0 452 27 69 4 28 69
    15 3 46 49 0 16 1 64 1 50 49
    15 4 29 29 0 55 0 47 4 68 29
    15 5 12 12 0 0 0 29 6 81 12
    15 6 10 10 0 0 0 23 2 88 10
    15 7 2 2 0 0 0 21 4 94 2
    15 8 0 0 0 0 0 17 4 96 0
    15 9 0 0 0 0 0 16 1 99 0
    15 10 0 0 0 0 0 16 1 99 0
    20 1 66 45 0 693 184 118 2 44 54
    20 2 88 86 0 171 39 190 4 12 84
    20 3 86 91 0 306 42 273 5 6 89
    20 4 71 76 0 132 20 332 6 19 75
    20 5 55 56 0 20 1 346 5 39 56
    20 6 35 35 0 0 0 269 16 49 35
    20 7 20 20 0 0 0 188 20 60 20
    20 8 5 5 0 0 0 127 31 64 5
    20 9 0 0 0 0 0 67 34 66 0
    20 10 0 0 0 0 0 46 28 72 0
    25 1 82 59 9 384 345 375 8 30 62
    25 2 95 95 12 78 45 623 11 9 79
    25 3 91 92 16 5 0 629 15 16 69
    25 4 78 78 19 0 0 613 18 25 56
    25 5 66 66 21 0 1 538 25 29 46
    25 6 57 57 20 0 1 534 29 29 41
    25 7 39 39 18 0 0 442 33 38 30
    25 8 31 31 12 0 1 442 38 37 26
    25 9 15 15 10 0 1 426 50 37 13
    25 10 6 6 5 0 2 286 59 35 6
    Table41_mean_unsolved_by_group = aggregate(Table41[,c(3:5)], by = list(Table41$n_jobs), mean)
    colnames(Table41_mean_unsolved_by_group ) = c("n_jobs", "unsolved_k1_a", "unsolved_k1_b", "unsolved_c1")
    
    Table41_mean_times_by_group = aggregate(Table41[,c(6:8)], by = list(Table41$n_jobs), mean)
    colnames(Table41_mean_times_by_group) = c("n_jobs", "time_k1_a", "time_k1_b", "time_c1")
    
    Table41_fastest_by_group = aggregate(Table41[,c(9:11)], by = list(Table41$n_jobs), mean)
    colnames(Table41_fastest_by_group) = c("n_jobs", "fastest_k1_a", "fastest_k1_b", "fastest_c1")
    
    Table41_summary = merge(Table41_mean_unsolved_by_group , Table41_mean_times_by_group, by = c("n_jobs"))
    Table41_summary = merge(Table41_summary, Table41_fastest_by_group, by = c("n_jobs"))
    Table 4.1 summary
    Unsolved
    Time
    Fastest
    \(&amp;#124;\mathcal J&amp;#124;\) KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1
    5 0 0 0 0 0 2 5 95 0
    10 4 7 0 22 13 10 6 88 7
    15 19 20 0 97 24 35 3 75 21
    20 43 42 0 132 29 196 15 43 42
    25 56 54 14 47 40 491 29 29 43

    For problem \((\widetilde{\mathcal P})\)

    Table44 = cbind(unsolved_kadapt2_a,
          unsolved_kadapt2_b$unsolved,
          unsolved_colgen2$unsolved,
          mean_times_kadapt2_a$time,
          mean_times_kadapt2_b$time,
          mean_times_colgen2$time,
          fastest_by_group2$best_is_kadapt_a,
          fastest_by_group2$best_is_kadapt_b,
          fastest_by_group2$best_is_colgen
        )
    Table 4.4
    Unsolved
    Time
    Fastest
    \(&amp;#124;\mathcal J&amp;#124;\) \(\Gamma\) KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1
    5 1 0 0 0 0 0 1 12 87 1
    5 2 0 0 0 0 0 1 14 86 0
    5 3 0 0 0 0 0 1 7 93 0
    10 1 0 11 0 14 27 28 22 72 5
    10 2 1 22 0 22 18 24 28 59 14
    10 3 1 9 0 9 4 11 16 78 6
    10 4 0 2 0 43 2 8 6 91 2
    10 5 0 1 0 37 40 4 12 86 1
    10 6 0 0 0 0 0 3 6 94 0
    10 7 0 0 0 0 0 3 8 92 0
    15 1 11 18 8 191 118 243 14 61 25
    15 2 36 55 16 212 280 219 25 27 48
    15 3 25 38 12 154 0 158 19 46 35
    15 4 19 26 8 131 0 169 21 56 23
    15 5 9 10 4 24 0 77 18 74 9
    15 6 5 6 4 8 0 47 20 76 5
    15 7 2 2 2 0 0 61 23 74 2
    15 8 0 0 0 0 0 50 19 81 0
    15 9 0 0 0 0 0 15 12 88 0
    Table44_mean_unsolved_by_group = aggregate(Table44[,c(3:5)], by = list(Table44$n_jobs), mean)
    colnames(Table44_mean_unsolved_by_group) = c("n_jobs", "unsolved_k2_a", "unsolved_k2_b", "unsolved_c2")
    
    Table44_mean_times_by_group = aggregate(Table44[,c(6:8)], by = list(Table44$n_jobs), mean)
    colnames(Table44_mean_times_by_group) = c("n_jobs", "time_k2_a", "time_k2_b", "time_c2")
    
    Table44_fastest_by_group = aggregate(Table44[,c(9:11)], by = list(Table44$n_jobs), mean)
    colnames(Table44_fastest_by_group) = c("n_jobs", "fastest_k2_a", "fastest_k2_b", "fastest_c2")
    
    Table44_summary = merge(Table44_mean_unsolved_by_group, Table44_mean_times_by_group, by = c("n_jobs"))
    Table44_summary = merge(Table44_summary, Table44_fastest_by_group, by = c("n_jobs"))
    Table 4.4 summary
    Unsolved
    Time
    Fastest
    \(&amp;#124;\mathcal J&amp;#124;\) KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1 KAdapt1-a KAdapt1-b ColGen1
    5 0 0 0 0 0 1 11 88 0
    10 0 7 0 18 13 12 14 82 4
    15 12 17 6 80 44 115 19 65 16

    Performance profiles

    plot_performance_profile = function(fastest, title = "Performance profile", prefix.output.file = "") {
      
      perf_colgen = fastest$time_colgen / fastest$best_time
      perf_kadapt_a = fastest$time_kadapt_a / fastest$best_time
      perf_kadapt_b = fastest$time_kadapt_b / fastest$best_time
      
      max_perf = max( max(perf_colgen), max(perf_kadapt_a), max(perf_kadapt_b) ) + 1
    
      perf_colgen[fastest$time_colgen >= 3600] = max_perf
      perf_kadapt_a[fastest$time_kadapt_a >= 3600] = max_perf
      perf_kadapt_b[fastest$time_kadapt_b >= 3600] = max_perf
      
      perf_profile_colgen = ecdf(perf_colgen)
      perf_profile_kadapt_a = ecdf(perf_kadapt_a)
      perf_profile_kadapt_b = ecdf(perf_kadapt_b)
      
      if (prefix.output.file != "") {
        
        x.axis = seq(from = 1, to = 10, by = .05)
        
        save.to.file = function (ecdf_function, method) {
          y.axis = ecdf_function(x.axis)
          write.csv(data.frame(x = x.axis, y = y.axis), paste0(prefix.output.file, ".", method, ".", "generated.csv"), row.names = FALSE)
        }
        
        save.to.file(perf_profile_colgen, "colgen")
        save.to.file(perf_profile_kadapt_a, "kadapt_a")
        save.to.file(perf_profile_kadapt_b, "kadapt_b")
        
        all_files = dir()
        files = all_files[str_detect(all_files, prefix.output.file)]
        zip(zipfile = paste0(prefix.output.file, ".generated.zip"), files = files)
        
      }
      
      xlim = c(1, 10)
      ylim = c(0, 1)
      
      plot(perf_profile_colgen, col = "blue", xlim = xlim, ylim = ylim, lty = "solid", cex = 0, main = title)
      lines(perf_profile_kadapt_a, col = "green", xlim = xlim, ylim = ylim, lty = "dotted", cex = 0)
      lines(perf_profile_kadapt_b, col = "red", xlim = xlim, ylim = ylim, lty = "dashed", cex = 0)
      
      legend(
        6, .5, legend = c("ColGen", "KAdapt-a", "KAdapt-b"), col = c("blue", "green", "red"), lty = c("solid", "dotted", "dashed")
      )
    }

    For problem \((\mathcal P)\)

    plot_performance_profile(fastest1, title = "Over all instances", prefix.output.file = "problem1.all")
    plot_performance_profile(fastest1[fastest1$n_jobs == 25,], title = "Over instances with n_jobs = 25", prefix.output.file = "problem1.25jobs")
    plot_performance_profile(fastest1[fastest1$gamma <= fastest1$n_jobs / 4,], title = "Over instances with Gamma <= n_jobs / 4", prefix.output.file = "problem1.hard")

    For problem \((\widetilde{\mathcal P})\)

    plot_performance_profile(fastest2, title = "Over all instances")
    plot_performance_profile(fastest2[fastest2$n_jobs == 15,], title = "Over instances with n_jobs = 15")
    plot_performance_profile(fastest2[fastest2$gamma <= fastest2$n_jobs / 4,], title = "Over instances with Gamma <= n_jobs / 4")

    Feasible solutions found

    compute_feasible_found_by_group = function(data, n_jobs) {
      
      data = data[data$time >= 3600 & data$n_jobs == n_jobs,]
      
      feasible_found = aggregate(is.finite(data$gap) & data$gap > 1e-4, by = list(data$gamma), sum)
      colnames(feasible_found) = c("gamma", "feasible_found")
      
      total = aggregate(data$instance, by = list(data$gamma), length)
      colnames(total) = c("gamma", "total")
      
      feasible_found$feasible_found = feasible_found$feasible_found / total$total * 100
      
      return (feasible_found)
      
    }
    feasible_found_colgen1 = compute_feasible_found_by_group(colgen1, 25)
    feasible_found_kadapt1_a = compute_feasible_found_by_group(kadapt1_a, 25)
    feasible_found_kadapt1_b = compute_feasible_found_by_group(kadapt1_b, 25)
    Table42 = cbind(
      feasible_found_kadapt1_a,
      feasible_found_kadapt1_b$feasible_found,
      feasible_found_colgen1$feasible_found
    )
    Feasible solutions found (%)
    \(\Gamma\) KAdapt1-a KAdapt1-b ColGen1
    1 100 100 29
    2 100 100 30
    3 100 100 15
    4 100 100 7
    5 100 100 6
    6 100 100 6
    7 100 100 14
    8 100 100 10
    9 100 100 38
    10 100 100 25

    Approximation cost

    compute_approximation_cost = function(colgen, k_adaptability, k_star) {
      
      # Merge results from colgen with those obtained by K-adaptability
      data = merge(colgen, k_adaptability, by = c("instance", "gamma"), all.y = TRUE)
      data = data[,c("instance", "gamma", "time.x", "time.y", "objective.x", "objective.y", "k.y")]
      colnames(data) = c("instance", "gamma", "time_colgen", "time_kadapt", "obj_colgen", "obj_kadapt", "k")
      
      # Only consider those instances where both methods have converged
      data = data[data$time_colgen < 3600 & data$time_kadapt < 3600,]
      
      # Merge the resulting with the estimates of K^*
      data = merge(data, k_star, by = c("instance", "gamma"), all.x = TRUE)
      colnames(data)[7] = "k"
      colnames(data)[8] = "k_star"
      
      # Only consider those rows with K <= K^*
      data = data[data$k <= data$k_star,]
      
      # Compute approximation gap
      data$approximation_cost = (data$obj_kadapt - data$obj_colgen) / data$obj_colgen * 100
      
      # Compute time ratio
      data$time_ratio = data$time_kadapt / data$time_colgen
    
      return (data)  
    }
    approximation_costs1a = compute_approximation_cost(colgen1, kadapt1_a, k_star1_a)
    approximation_costs2a = compute_approximation_cost(colgen2, kadapt2_a, k_star2_a)
    compute_approximation_cost_by_group = function(approximation_cost) {
      
      # Compute mean of approximation_cost and time_ratio
      result = aggregate(approximation_cost[,c("approximation_cost", "time_ratio")], by = list(approximation_cost$k_star, approximation_cost$k), mean)
      colnames(result)[1:2] = c("k_star", "k")
      
      # Count instances in each category
      total = aggregate(approximation_cost$instance, by = list(approximation_cost$k_star, approximation_cost$k), length)
      result$total = total[[3]]
      
      result = result[order(result$k_star, result$k),]
      rownames(result) = NULL
      
      return (result)
      
    }
    Table43 = compute_approximation_cost_by_group(approximation_costs1a)
    Table45 = compute_approximation_cost_by_group(approximation_costs2a)

    For problem \(({\mathcal P})\)

    \(K^*\) \(K\) Approximation gap (%) Time ratio # Instances
    1 1 0.00 0.03 1989
    2 1 6.69 0.00 587
    2 2 0.00 5.23 110
    3 1 5.86 0.01 368
    3 2 1.43 6.00 368
    3 3 0.00 14.59 90
    4 1 6.30 0.01 123
    4 2 2.06 0.09 123
    4 3 0.60 14.23 123
    4 4 0.00 13.27 32
    5 1 6.85 0.01 16
    5 2 2.25 0.04 16
    5 3 0.67 0.82 16
    5 4 0.24 34.76 16
    5 5 0.00 29.28 3
    6 1 1.92 0.01 3
    6 2 1.70 0.02 3
    6 3 0.58 0.05 3
    6 4 0.13 0.31 3
    6 5 0.02 5.87 3
    6 6 0.00 2.06 2

    For problem \((\widetilde{\mathcal P})\)

    \(K^*\) \(K\) Approximation gap (%) Time ratio # Instances
    1 1 0.00 0.23 1165
    2 1 4.88 0.06 87
    2 2 0.00 0.11 87
    3 1 6.37 0.02 76
    3 2 0.97 0.09 76
    3 3 0.00 3.74 65
    4 1 7.15 0.04 93
    4 2 1.65 0.09 93
    4 3 0.40 2.01 73
    4 4 0.00 5.79 59
    5 1 7.93 0.00 40
    5 2 2.72 0.03 40
    5 3 0.83 0.53 40
    5 4 0.19 8.75 40
    5 5 0.00 14.17 14
    6 1 5.84 0.01 14
    6 2 2.98 0.02 14
    6 3 1.12 0.09 14
    6 4 0.41 0.81 14
    6 5 0.09 13.24 14
    6 6 0.00 35.19 6
    7 1 0.37 0.01 2
    7 2 0.37 0.02 2
    7 3 0.37 0.14 2
    7 4 0.37 0.65 2
    7 5 0.14 5.52 2
    7 6 0.03 78.13 2

    Fixed-order costs analysis

    compute_fixed_order_costs = function(t_colgen1, t_colgen2) {
      
      result = merge(t_colgen1, t_colgen2, by = c("instance", "gamma"))
      result = result[,c("instance", "gamma", "n_jobs.x", "objective.x", "objective.y", "time.x", "time.y")]
      colnames(result)[3:7] = c("n_jobs", "obj_colgen1", "obj_colgen2", "time_colgen1", "time_colgen2")
      
      result = result[result$time_colgen1 < 3600 & result$time_colgen2 < 3600,]
      
      result$gap = (result$obj_colgen2 - result$obj_colgen1) / result$obj_colgen1 * 100
      
      return (result)
    }
    fixed_order_costs = compute_fixed_order_costs(colgen1, colgen2)
    compute_fixed_order_costs_by_group = function(t_fixed_order_costs) {
      
      result = aggregate(t_fixed_order_costs[,c("obj_colgen1", "obj_colgen2", "gap")], by = list(t_fixed_order_costs$n_jobs, t_fixed_order_costs$gamma), mean)
      colnames(result)[1:2] = c("n_jobs", "gamma")
      
      total = aggregate(t_fixed_order_costs$instance, by = list(t_fixed_order_costs$n_jobs, t_fixed_order_costs$gamma), length)
      result$total = total[[3]]
      
      result = result[order(result$n_jobs, result$gamma),]
      rownames(result) = NULL
      
      return (result)
    }
    Table46 = compute_fixed_order_costs_by_group(fixed_order_costs)
    Table 4.6
    Objective cost
    \(&amp;#124;\mathcal J&amp;#124;\) \(\Gamma\) Free (ColGen1) Fixed order (ColGen2) Gap (%) # Instances
    5 1 70.39 70.40 0.00 80
    5 2 75.27 75.28 0.01 80
    5 3 75.94 75.94 0.00 80
    10 1 144.76 145.14 0.45 80
    10 2 165.92 166.21 0.25 80
    10 3 171.73 171.80 0.05 80
    10 4 173.24 173.26 0.01 80
    10 5 173.61 173.61 0.00 80
    10 6 173.70 173.70 0.00 80
    10 7 173.70 173.70 0.00 80
    15 1 192.83 193.32 0.29 74
    15 2 232.46 233.06 0.32 67
    15 3 248.97 249.57 0.27 70
    15 4 253.39 253.78 0.16 74
    15 5 254.77 254.91 0.05 77
    15 6 255.35 255.37 0.01 77
    15 7 255.74 255.74 0.00 78
    15 8 256.98 256.98 0.00 80
    15 9 256.98 256.98 0.00 80

    This document is automatically generated after every git push action on the public repository hlefebvr/hlefebvr.github.io using rmarkdown and Github Actions. This ensures the reproducibility of our data manipulation. The last compilation was performed on the 15/01/25 12:50:01.