Table of content

    Open methodology for “Exact approach for convex adjustable robust optimization > Facility Location Problem (FLP)

    Loading the data

    The raw results can be found in the file results.csv with the following columns:

    • tag: a tag which should always equal “result” used to grep the result line in the execution log file.
    • instance: the name or path of the instance.
    • n_facilities: the number of facilities in the instance.
    • n_customers: the number of customers in the instance.
    • Gamma: the value of \(\Gamma\) which was used.
    • deviation: the maximum deviation, in percentage, from the nominal demand.
    • time_limit: the time limit which was used when solving the instance.
    • method: the name of the method which was used to solve the instance.
    • total_time: the total time used to solve the instance.
    • master_time: the time spent solving the master problem.
    • separation_time: the time spent solving the separation problem.
    • best_bound: the best bound found.
    • iteration_count: the number of iterations.
    • fail: should be empty if the execution of the algorithm went well.

    We start by reading the file and by removing the “tag” column.

    results = read.table("./results.csv", header = FALSE, sep = ',')
    colnames(results) <- c("tag", "instance", "n_facilities", "n_customers", "Gamma", "deviation", "time_limit", "method", "use_heuristic", "total_time", "master_time", "separation_time", "best_bound", "iteration_count", "fail")
    results$tag = NULL

    We then check that all instances were solved without issue by checking the “fail” column.

    sum(results$fail)
    ## [1] 0

    Then, we compute the percentage which \(\Gamma\) represents for the total number of customers

    results$p = results$Gamma / results$n_customers
    results$p = ceiling(results$p / .05) * .05
    results = results %>%
      mutate(
        ratio_demand_capacity = as.integer(sub('.*instance_F\\d+_C\\d+_R(\\d+)__\\d+\\.txt', '\\1', instance))
      )
    
    results$size = paste0("(", results$n_facilities, ",", results$n_customers, "), ", results$p)
    results$method_extended = paste0(results$method, ", ", results$use_heuristic)

    We add a tag for unsolved instances.

    time_limit = 7200
    
    results$unsolved = results$total_time >= time_limit | results$fail

    All in all, our result data reads.

    Unsolved instances

    for (method in unique(results$method_extended)) {
      
      # Sum of unsolved cases for each size
      sum_unsolved = results[results$method_extended == method,] %>% group_by(size) %>% summarise(total_unsolved = sum(unsolved))
      
      # Create a bar plot
      p = ggplot(sum_unsolved, aes(x = size, y = total_unsolved)) +
        geom_bar(stat = "identity") +
        labs(x = "Size", y = "Total Unsolved Cases", title = method) +
        theme_minimal()
    
      ggsave(paste0("unsolved_", method, ".pdf"), plot = p, width = 10, height = 6)
      
      print(p)
    }

    Performance profiles and ECDF

    We now introduce a function which plots the performance profile of our solvers over a given test set.

    add_performance_ratio = function(dataset, 
                                     criterion_column = "total_time",
                                     unsolved_column = "unsolved",
                                     instance_column = "instance",
                                     solver_column = "solver",
                                     output_column = "performance_ratio") {
      
      # Compute best score for each instance
      best = dataset %>%
        group_by(!!sym(instance_column)) %>%
        mutate(best_solver = min(!!sym(criterion_column)))
      
      # Compute performance ratio for each instance and solver
      result = best %>%
        group_by(!!sym(instance_column), !!sym(solver_column)) %>%
        mutate(!!sym(output_column) := !!sym(criterion_column) / best_solver) %>%
        ungroup()
      
      if (sum(result[,unsolved_column]) > 0) {
        result[result[,unsolved_column] == TRUE,output_column] = max(result[,output_column])
      }
    
      return (result)
    }
    
    plot_performance_profile = function(dataset,
                                        criterion_column,
                                        unsolved_column = "unsolved",
                                        instance_column = "instance",
                                        solver_column = "solver"
                                        ) {
      
      dataset_with_performance_ratios = add_performance_ratio(dataset,
                                                              criterion_column = criterion_column,
                                                              instance_column = instance_column,
                                                              solver_column = solver_column,
                                                              unsolved_column = unsolved_column)
      
      solved_dataset_with_performance_ratios = dataset_with_performance_ratios[!dataset_with_performance_ratios[,unsolved_column],]
      
      compute_performance_profile_point = function(method, data) {
        
        performance_ratios = solved_dataset_with_performance_ratios[solved_dataset_with_performance_ratios[,solver_column] == method,]$performance_ratio
        
        unscaled_performance_profile_point = ecdf(performance_ratios)(data)
        
        n_instances = sum(dataset[,solver_column] == method)
        n_solved_instances = sum(dataset[,solver_column] == method & !dataset[,unsolved_column])
        
        return( unscaled_performance_profile_point * n_solved_instances / n_instances )
      }
      
      perf = solved_dataset_with_performance_ratios %>%
        group_by(!!sym(solver_column)) %>%
        mutate(performance_profile_point = compute_performance_profile_point(unique(!!sym(solver_column)), performance_ratio))
      
      result = ggplot(data = perf, aes(x = performance_ratio, y = performance_profile_point, color = !!sym(solver_column))) +
                  geom_line()
      
      return (result)
    }
    performance_profile = plot_performance_profile(results, criterion_column = "total_time", solver_column = "method_extended") +
      labs(x = "Performance ratio", y = "% of instances") +
      scale_y_continuous(limits = c(0, 1)) +
      theme_minimal()
    print(performance_profile)

    ggsave("performance_profile.pdf", plot = performance_profile)
    ## Saving 7 x 5 in image
    for (ratio in unique(results$ratio_demand_capacity)) {
      
      p = plot_performance_profile(results[results$ratio_demand_capacity == ratio,], criterion_column = "total_time", solver_column = "method_extended") +
        labs(x = "Performance ratio", y = "% of instances", title = paste0("R = ", ratio / 1000)) +
        scale_y_continuous(limits = c(0, 1)) +
        theme_minimal()
      
      print(p)
    }

    As a complement, we also draw the ECDF.

    ggplot(results, aes(x = total_time, color = method_extended)) +
      stat_ecdf(geom = "step") +
      xlab("Total Time") +
      ylab("ECDF") +
      labs(title = "ECDF of Total Time by Method")  +
      scale_x_continuous(breaks = seq(0, max(results$total_time), by = 500), labels = seq(0, max(results$total_time), by = 500)) +
      theme_minimal()

    Summary table

    In this section, we create a table summarizing the outcome of our experiments.

    We start by computing average computation times over the solved instances.

    results_solved = results %>%
      filter(total_time < 7200) %>%
      group_by(method_extended, n_facilities, n_customers, p, deviation) %>%
      summarize(
        solved = n(),
        total_time = mean(total_time),
        master_time = mean(master_time),
        separation_time = mean(separation_time),
        solved_iteration_count = mean(iteration_count),
        .groups = "drop"
      ) %>%
      ungroup()

    Then, we also consider unsolved instances: we count the number of such instances and compute the average iteration count.

    results_unsolved <- results %>%
      filter(total_time >= 7200) %>%
      group_by(method_extended, n_facilities, n_customers, p, deviation) %>%
      summarize(
        unsolved = n(),
        unsolved_iteration_count = mean(iteration_count),
        .groups = "drop"
      ) %>%
      ungroup()

    We then merge the two tables.

    final_result <- merge(results_solved, results_unsolved, by = c("method_extended", "n_facilities", "n_customers", "p", "deviation"), all = TRUE)

    Finally, we replace all NA entries by 0.

    final_result[is.na(final_result)] = 0

    Here is our table.

    Summary table
    Solved instances
    Unsolved instances
    Method &#124;V_1&#124; &#124;V_2&#124; p dev Count Total Master Sepatation # Iter Count # Iter
    CCG, 0 10 15 0.1 0.25 20 1.25 0.52 0.68 2.25 0 0.00
    CCG, 0 10 15 0.1 0.50 20 1.22 0.50 0.67 2.20 0 0.00
    CCG, 0 10 15 0.2 0.25 20 3.94 0.55 3.34 2.25 0 0.00
    CCG, 0 10 15 0.2 0.50 20 4.76 0.64 4.06 2.45 0 0.00
    CCG, 0 10 15 0.3 0.25 20 7.91 0.86 6.99 2.75 0 0.00
    CCG, 0 10 15 0.3 0.50 20 7.71 0.69 6.96 2.65 0 0.00
    CCG, 0 10 20 0.1 0.25 20 4.98 0.94 3.98 2.50 0 0.00
    CCG, 0 10 20 0.1 0.50 20 5.03 0.94 4.03 2.55 0 0.00
    CCG, 0 10 20 0.2 0.25 20 26.35 1.01 25.29 2.65 0 0.00
    CCG, 0 10 20 0.2 0.50 20 26.58 0.97 25.54 2.70 0 0.00
    CCG, 0 10 20 0.3 0.25 20 83.87 0.95 82.85 2.70 0 0.00
    CCG, 0 10 20 0.3 0.50 20 88.27 0.83 87.38 2.70 0 0.00
    CCG, 0 15 30 0.1 0.25 20 129.85 4.12 125.60 2.90 0 0.00
    CCG, 0 15 30 0.1 0.50 20 131.51 4.23 127.16 2.95 0 0.00
    CCG, 0 15 30 0.2 0.25 20 2969.99 4.79 2965.07 3.10 0 0.00
    CCG, 0 15 30 0.2 0.50 20 3027.15 4.61 3022.41 3.10 0 0.00
    CCG, 0 15 30 0.3 0.25 5 4303.16 2.27 4300.79 2.60 15 1.40
    CCG, 0 15 30 0.3 0.50 5 4833.15 2.15 4830.88 2.60 15 1.40
    CCG, 1 10 15 0.1 0.25 20 1.99 1.47 0.46 3.40 0 0.00
    CCG, 1 10 15 0.1 0.50 20 1.97 1.43 0.48 3.40 0 0.00
    CCG, 1 10 15 0.2 0.25 20 4.08 1.63 2.37 3.75 0 0.00
    CCG, 1 10 15 0.2 0.50 20 5.01 1.62 3.31 3.85 0 0.00
    CCG, 1 10 15 0.3 0.25 20 6.35 1.99 4.28 4.10 0 0.00
    CCG, 1 10 15 0.3 0.50 20 6.83 1.69 5.06 4.05 0 0.00
    CCG, 1 10 20 0.1 0.25 20 4.81 2.20 2.53 3.65 0 0.00
    CCG, 1 10 20 0.1 0.50 20 4.94 2.20 2.66 3.70 0 0.00
    CCG, 1 10 20 0.2 0.25 20 19.99 2.45 17.45 3.95 0 0.00
    CCG, 1 10 20 0.2 0.50 20 20.05 2.17 17.79 3.90 0 0.00
    CCG, 1 10 20 0.3 0.25 20 56.29 2.87 53.34 4.30 0 0.00
    CCG, 1 10 20 0.3 0.50 20 71.35 2.37 68.90 4.10 0 0.00
    CCG, 1 15 30 0.1 0.25 20 85.53 8.72 76.65 3.95 0 0.00
    CCG, 1 15 30 0.1 0.50 20 82.50 7.78 74.57 3.80 0 0.00
    CCG, 1 15 30 0.2 0.25 20 1730.38 11.12 1719.08 4.55 0 0.00
    CCG, 1 15 30 0.2 0.50 20 2359.21 11.34 2347.68 4.50 0 0.00
    CCG, 1 15 30 0.3 0.25 10 5406.71 10.22 5396.31 4.50 10 3.70
    CCG, 1 15 30 0.3 0.50 6 3827.73 9.50 3818.05 4.50 14 3.00
    GBD, 0 10 15 0.1 0.25 20 9.63 0.59 9.00 31.95 0 0.00
    GBD, 0 10 15 0.1 0.50 20 9.41 0.56 8.81 31.15 0 0.00
    GBD, 0 10 15 0.2 0.25 20 43.64 0.55 43.04 29.95 0 0.00
    GBD, 0 10 15 0.2 0.50 20 43.41 0.47 42.89 27.55 0 0.00
    GBD, 0 10 15 0.3 0.25 20 71.43 0.52 70.86 29.65 0 0.00
    GBD, 0 10 15 0.3 0.50 20 63.00 0.44 62.52 25.15 0 0.00
    GBD, 0 10 20 0.1 0.25 20 48.39 0.66 47.67 31.90 0 0.00
    GBD, 0 10 20 0.1 0.50 20 47.93 0.64 47.24 30.95 0 0.00
    GBD, 0 10 20 0.2 0.25 20 294.82 0.65 294.12 31.35 0 0.00
    GBD, 0 10 20 0.2 0.50 20 277.99 0.61 277.33 29.15 0 0.00
    GBD, 0 10 20 0.3 0.25 20 894.53 0.56 893.92 29.45 0 0.00
    GBD, 0 10 20 0.3 0.50 20 856.88 0.57 856.26 27.85 0 0.00
    GBD, 0 15 30 0.1 0.25 18 2401.50 4.62 2396.76 66.17 2 170.00
    GBD, 0 15 30 0.1 0.50 19 2765.66 5.43 2760.10 71.95 1 207.00
    GBD, 0 15 30 0.2 0.25 0 0.00 0.00 0.00 0.00 20 9.65
    GBD, 0 15 30 0.2 0.50 0 0.00 0.00 0.00 0.00 20 9.80
    GBD, 0 15 30 0.3 0.25 0 0.00 0.00 0.00 0.00 20 2.85
    GBD, 0 15 30 0.3 0.50 0 0.00 0.00 0.00 0.00 20 2.65
    GBD, 1 10 15 0.1 0.25 20 2.25 0.70 1.49 34.30 0 0.00
    GBD, 1 10 15 0.1 0.50 20 4.12 0.67 3.40 34.00 0 0.00
    GBD, 1 10 15 0.2 0.25 20 9.30 0.69 8.55 33.45 0 0.00
    GBD, 1 10 15 0.2 0.50 20 16.39 0.58 15.76 30.75 0 0.00
    GBD, 1 10 15 0.3 0.25 20 31.25 0.69 30.51 33.85 0 0.00
    GBD, 1 10 15 0.3 0.50 20 28.69 0.55 28.09 28.95 0 0.00
    GBD, 1 10 20 0.1 0.25 20 12.60 0.77 11.77 35.15 0 0.00
    GBD, 1 10 20 0.1 0.50 20 10.50 0.73 9.72 34.30 0 0.00
    GBD, 1 10 20 0.2 0.25 20 101.11 0.86 100.21 36.75 0 0.00
    GBD, 1 10 20 0.2 0.50 20 114.80 0.69 114.07 32.10 0 0.00
    GBD, 1 10 20 0.3 0.25 20 252.38 0.78 251.54 34.35 0 0.00
    GBD, 1 10 20 0.3 0.50 20 367.06 0.73 366.28 32.55 0 0.00
    GBD, 1 15 30 0.1 0.25 20 344.79 8.99 335.66 83.30 0 0.00
    GBD, 1 15 30 0.1 0.50 20 624.76 9.10 615.52 87.55 0 0.00
    GBD, 1 15 30 0.2 0.25 9 2678.95 11.49 2667.30 91.11 11 40.27
    GBD, 1 15 30 0.2 0.50 5 3185.92 6.81 3178.95 85.80 15 59.87
    GBD, 1 15 30 0.3 0.25 3 5379.95 7.06 5372.76 77.67 17 85.35
    GBD, 1 15 30 0.3 0.50 2 4402.85 5.80 4396.92 75.00 18 60.94

    Number of iterations

    for (method in unique(results$method_extended)) {
      
      p = ggplot(results[results$method_extended == method & results$total_time < time_limit,], aes(x = iteration_count)) +
        geom_bar() +
        labs(
          title = method,
          x = "Number of iterations",
          y = "Number of instances"
        ) +
        theme_minimal()
        
      print(p) 
    }

    Understanding unsolved instances

    We first consider those instances with 15 facilities and p = 0.3 since these are the instances which both approaches cannot solve at all.

    subset = results[results$n_facilities == 15 & results$p > .25,]

    Then, observe how, for the subset of instances such that iteration_count is 1 for at least one of the methods, the computation times are the same (which makes sense because, actually, the same routines are executed - intial master and first separation).

    filtered_subset = subset %>%
      group_by(instance) %>%
      filter(any(iteration_count < 1))
    
    ggplot(filtered_subset, aes(x = method, y = master_time)) +
      geom_boxplot() +
      labs(x = "Method", y = "Master time") +
      theme_minimal()

    ggplot(filtered_subset, aes(x = method, y = separation_time)) +
      geom_boxplot() +
      labs(x = "Method", y = "Separation time") +
      theme_minimal()

    However, for some instances, GBD can do more iterations because the master problem is nicer whereas CCG has a convex MINLP problem which he cannot solve within the time limit.

    for (method in unique(subset$method_extended)) {
      
      p = ggplot(subset[subset$method_extended == method,], aes(x = iteration_count)) +
        geom_bar() +
        labs(
          title = method,
          x = "Number of iterations",
          y = "Number of instances"
        ) +
        theme_minimal()
        
      print(p) 
    }


    This document is automatically generated after every git push action on the public repository hlefebvr/hlefebvr.github.io using rmarkdown and Github Actions. This ensures the reproducibility of our data manipulation. The last compilation was performed on the 15/01/25 12:49:37.