Table of content

    Open methodology for “Exact approach for convex adjustable robust optimization > Resource Allocation Problem (RAP)

    Loading the data

    The raw results can be found in the file results.csv with the following columns:

    • tag: a tag which should always equal “result” used to grep the result line in the execution log file.
    • instance: the name or path of the instance.
    • n_servers: the number of servers in the instance.
    • n_clients: the number of clients in the instance.
    • Gamma: the value of \(\Gamma\) which was used.
    • deviation: the maximum deviation, in percentage, from the nominal demand.
    • time_limit: the time limit which was used when solving the instance.
    • method: the name of the method which was used to solve the instance.
    • total_time: the total time used to solve the instance.
    • master_time: the time spent solving the master problem.
    • separation_time: the time spent solving the separation problem.
    • best_bound: the best bound found.
    • iteration_count: the number of iterations.
    • fail: should be empty if the execution of the algorithm went well.

    We start by reading the file and by removing the “tag” column.

    results = read.table("./new-results.csv", header = FALSE, sep = ',')
    colnames(results) <- c("tag", "instance", "n_servers", "n_clients", "Gamma", "deviation", "time_limit", "method", "use_heuristic", "total_time", "master_time", "separation_time", "best_bound", "iteration_count", "fail")
    results$tag = NULL

    Then, we compute the percentage which \(\Gamma\) represents for the total number of clients.

    results$p = results$Gamma / results$n_clients
    results$p = ceiling(results$p / .05) * .05
    results$size = paste0("(", results$n_servers, ",", results$n_clients, "), ", results$p)
    results$method_extended = paste0(results$method, ", ", results$use_heuristic)

    We also get rid of instances which were too large to be solved by both approaches.

    results = results[!(results$n_clients == 40),]
    results = results[!(results$n_servers == 25 & results$n_clients == 25),]

    We then check that all instances were solved without issue by checking the “fail” column.

    sum(results$fail)
    ## [1] 62

    We add a tag for unsolved instances.

    time_limit = 7200
    
    if (sum(results$fail) > 0) {
      results[results$fail == TRUE,]$total_time = time_limit
    }
    
    results$unsolved = results$total_time >= time_limit | results$fail

    All in all, our result data reads.

    Unsolved instances

    for (method in unique(results$method_extended)) {
      
      # Sum of unsolved cases for each size
      sum_unsolved = results[results$method_extended == method,] %>% group_by(size) %>% summarise(total_unsolved = sum(unsolved))
      
      # Create a bar plot
      p = ggplot(sum_unsolved, aes(x = size, y = total_unsolved)) +
        geom_bar(stat = "identity") +
        labs(x = "Size", y = "Total Unsolved Cases", title = method) +
        theme_minimal() +
        theme(axis.text.x = element_text(angle = 45, hjust = 1))
      
      ggsave(paste0("unsolved_", method, ".pdf"), plot = p, width = 10, height = 6)
      
      print(p)
    }

    Performance profiles and ECDF

    We now introduce a function which plots the performance profile of our solvers over a given test set.

    add_performance_ratio = function(dataset, 
                                     criterion_column = "total_time",
                                     unsolved_column = "unsolved",
                                     instance_column = "instance",
                                     solver_column = "solver",
                                     output_column = "performance_ratio") {
      
      # Compute best score for each instance
      best = dataset %>%
        group_by(!!sym(instance_column)) %>%
        mutate(best_solver = min(!!sym(criterion_column)))
      
      # Compute performance ratio for each instance and solver
      result = best %>%
        group_by(!!sym(instance_column), !!sym(solver_column)) %>%
        mutate(!!sym(output_column) := !!sym(criterion_column) / best_solver) %>%
        ungroup()
      
      if (sum(result[,unsolved_column]) > 0) {
        result[result[,unsolved_column] == TRUE,output_column] = max(result[,output_column])
      }
    
      return (result)
    }
    
    plot_performance_profile = function(dataset,
                                        criterion_column,
                                        unsolved_column = "unsolved",
                                        instance_column = "instance",
                                        solver_column = "solver"
                                        ) {
      
      dataset_with_performance_ratios = add_performance_ratio(dataset,
                                                              criterion_column = criterion_column,
                                                              instance_column = instance_column,
                                                              solver_column = solver_column,
                                                              unsolved_column = unsolved_column)
      
      solved_dataset_with_performance_ratios = dataset_with_performance_ratios[!dataset_with_performance_ratios[,unsolved_column],]
      
      compute_performance_profile_point = function(method, data) {
        
        performance_ratios = solved_dataset_with_performance_ratios[solved_dataset_with_performance_ratios[,solver_column] == method,]$performance_ratio
        
        unscaled_performance_profile_point = ecdf(performance_ratios)(data)
        
        n_instances = sum(dataset[,solver_column] == method)
        n_solved_instances = sum(dataset[,solver_column] == method & !dataset[,unsolved_column])
        
        return( unscaled_performance_profile_point * n_solved_instances / n_instances )
      }
      
      perf = solved_dataset_with_performance_ratios %>%
        group_by(!!sym(solver_column)) %>%
        mutate(performance_profile_point = compute_performance_profile_point(unique(!!sym(solver_column)), performance_ratio))
      
      result = ggplot(data = perf, aes(x = performance_ratio, y = performance_profile_point, color = !!sym(solver_column))) +
                  geom_line()
      
      return (result)
    }
    performance_profile = plot_performance_profile(results, criterion_column = "total_time", solver_column = "method_extended") +
      labs(x = "Performance ratio", y = "% of instances") +
      scale_y_continuous(limits = c(0, 1)) +
      theme_minimal()
    print(performance_profile)

    ggsave("performance_profile.pdf", plot = performance_profile)
    ## Saving 7 x 5 in image

    As a complement, we also draw the ECDF.

    ggplot(results, aes(x = total_time, color = method_extended)) +
      stat_ecdf(geom = "step") +
      xlab("Total Time") +
      ylab("ECDF") +
      labs(title = "ECDF of Total Time by Method")  +
      scale_x_continuous(breaks = seq(0, max(results$total_time), by = 500), labels = seq(0, max(results$total_time), by = 500)) +
      theme_minimal()

    Summary table

    In this section, we create a table summarizing the outcome of our experiments.

    We start by computing average computation times over the solved instances.

    results_solved = results %>%
      filter(total_time < time_limit) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        solved = n(),
        total_time = mean(total_time),
        master_time = mean(master_time),
        separation_time = mean(separation_time),
        solved_iteration_count = mean(iteration_count),
        .groups = "drop"
      ) %>%
      ungroup()

    Then, we also consider unsolved instances: we count the number of such instances and compute the average iteration count.

    results_unsolved <- results %>%
      filter(total_time >= time_limit) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        unsolved = n(),
        unsolved_iteration_count = mean(iteration_count),
        .groups = "drop"
      ) %>%
      ungroup()
    
    results_fail <- results %>%
      filter(fail == TRUE) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        fail = n(),
        .groups = "drop"
      ) %>%
      ungroup()

    We then merge the two tables.

    final_result <- merge(results_solved, results_unsolved, by = c("method_extended", "n_servers", "n_clients", "p", "deviation"), all = TRUE)
    final_result <- merge(final_result, results_fail, by = c("method_extended", "n_servers", "n_clients", "p", "deviation"), all = TRUE)

    Here is our table.

    Summary table
    Solved instances
    Unsolved instances
    Method &#124;V_1&#124; &#124;V_2&#124; p dev Count Total Master Sepatation # Iter Count # Iter # Errors
    CCG, 0 10 20 0.1 0.25 10 2.76 0.07 2.64 2.80 NA NA NA
    CCG, 0 10 20 0.1 0.50 10 2.79 0.06 2.67 3.00 NA NA NA
    CCG, 0 10 20 0.2 0.25 10 20.97 0.06 20.85 3.00 NA NA NA
    CCG, 0 10 20 0.2 0.50 10 18.75 0.06 18.63 2.80 NA NA NA
    CCG, 0 10 20 0.3 0.25 10 64.48 0.08 64.32 3.00 NA NA NA
    CCG, 0 10 20 0.3 0.50 8 67.37 0.05 67.27 2.88 2 28.00 2
    CCG, 0 10 30 0.1 0.25 8 41.15 0.07 41.00 2.62 2 2.50 2
    CCG, 0 10 30 0.1 0.50 10 51.68 0.09 51.50 3.00 NA NA NA
    CCG, 0 10 30 0.2 0.25 9 1679.41 0.09 1679.23 3.11 1 1.00 1
    CCG, 0 10 30 0.2 0.50 9 1686.99 0.09 1686.81 3.11 1 2.00 1
    CCG, 0 10 30 0.3 0.25 4 3209.94 0.07 3209.79 2.50 6 1.83 2
    CCG, 0 10 30 0.3 0.50 4 3085.95 0.07 3085.81 2.50 6 1.67 1
    CCG, 0 15 20 0.1 0.25 10 3.60 0.08 3.44 2.80 NA NA NA
    CCG, 0 15 20 0.1 0.50 10 3.49 0.10 3.32 2.60 NA NA NA
    CCG, 0 15 20 0.2 0.25 10 30.09 0.09 29.91 2.80 NA NA NA
    CCG, 0 15 20 0.2 0.50 10 30.52 0.07 30.38 2.70 NA NA NA
    CCG, 0 15 20 0.3 0.25 10 138.92 0.11 138.73 3.00 NA NA NA
    CCG, 0 15 20 0.3 0.50 10 131.24 0.08 131.08 2.90 NA NA NA
    CCG, 0 15 30 0.1 0.25 10 50.36 0.13 50.11 3.00 NA NA NA
    CCG, 0 15 30 0.1 0.50 10 54.69 0.13 54.44 3.20 NA NA NA
    CCG, 0 15 30 0.2 0.25 10 1945.35 0.14 1945.08 3.50 NA NA NA
    CCG, 0 15 30 0.2 0.50 10 1916.98 0.13 1916.73 3.40 NA NA NA
    CCG, 0 15 30 0.3 0.25 6 4018.79 0.10 4018.58 3.17 4 1.50 NA
    CCG, 0 15 30 0.3 0.50 6 3568.58 0.11 3568.36 3.00 4 1.75 NA
    CCG, 0 20 20 0.1 0.25 10 4.34 0.11 4.14 2.80 NA NA NA
    CCG, 0 20 20 0.1 0.50 10 4.71 0.11 4.50 2.90 NA NA NA
    CCG, 0 20 20 0.2 0.25 10 37.34 0.10 37.14 2.90 NA NA NA
    CCG, 0 20 20 0.2 0.50 10 40.38 0.12 40.16 3.20 NA NA NA
    CCG, 0 20 20 0.3 0.25 10 120.73 0.10 120.53 3.00 NA NA NA
    CCG, 0 20 20 0.3 0.50 10 113.98 0.11 113.77 2.90 NA NA NA
    CCG, 0 20 30 0.1 0.25 10 65.89 0.11 65.65 2.70 NA NA NA
    CCG, 0 20 30 0.1 0.50 10 67.84 0.13 67.59 2.70 NA NA NA
    CCG, 0 20 30 0.2 0.25 10 2197.14 0.12 2196.89 2.80 NA NA NA
    CCG, 0 20 30 0.2 0.50 10 2179.94 0.13 2179.66 2.80 NA NA NA
    CCG, 0 20 30 0.3 0.25 3 4795.36 0.18 4795.05 2.67 7 1.86 NA
    CCG, 0 20 30 0.3 0.50 3 4519.99 0.13 4519.71 3.00 7 1.57 NA
    CCG, 1 10 20 0.1 0.25 10 2.64 0.13 2.42 4.50 NA NA NA
    CCG, 1 10 20 0.1 0.50 9 2.49 0.13 2.27 4.67 1 3.00 1
    CCG, 1 10 20 0.2 0.25 10 19.72 0.14 19.49 4.90 NA NA NA
    CCG, 1 10 20 0.2 0.50 10 17.30 0.12 17.11 4.70 NA NA NA
    CCG, 1 10 20 0.3 0.25 10 56.65 0.17 56.36 5.30 NA NA NA
    CCG, 1 10 20 0.3 0.50 9 56.27 0.13 56.06 4.89 1 7.00 1
    CCG, 1 10 30 0.1 0.25 8 38.82 0.19 38.51 5.12 2 1.00 2
    CCG, 1 10 30 0.1 0.50 8 44.02 0.18 43.72 5.00 2 7.00 2
    CCG, 1 10 30 0.2 0.25 8 1394.47 0.19 1394.15 4.88 2 2.50 2
    CCG, 1 10 30 0.2 0.50 8 1511.38 0.21 1511.04 5.12 2 2.00 2
    CCG, 1 10 30 0.3 0.25 3 3276.78 0.15 3276.52 4.33 7 3.29 2
    CCG, 1 10 30 0.3 0.50 2 3263.23 0.16 3262.95 4.50 8 3.62 5
    CCG, 1 15 20 0.1 0.25 10 3.34 0.18 3.04 4.70 NA NA NA
    CCG, 1 15 20 0.1 0.50 10 3.27 0.16 2.99 4.50 NA NA NA
    CCG, 1 15 20 0.2 0.25 10 26.58 0.18 26.28 4.70 NA NA NA
    CCG, 1 15 20 0.2 0.50 10 26.20 0.16 25.93 4.50 NA NA NA
    CCG, 1 15 20 0.3 0.25 10 116.75 0.22 116.40 5.20 NA NA NA
    CCG, 1 15 20 0.3 0.50 10 108.70 0.19 108.39 4.80 NA NA NA
    CCG, 1 15 30 0.1 0.25 10 44.96 0.28 44.51 5.00 NA NA NA
    CCG, 1 15 30 0.1 0.50 10 49.76 0.25 49.34 4.90 NA NA NA
    CCG, 1 15 30 0.2 0.25 9 1536.86 0.33 1536.34 5.67 1 6.00 NA
    CCG, 1 15 30 0.2 0.50 10 1677.56 0.33 1677.06 5.40 NA NA NA
    CCG, 1 15 30 0.3 0.25 7 3711.00 0.27 3710.57 4.71 3 3.67 NA
    CCG, 1 15 30 0.3 0.50 6 3476.93 0.25 3476.52 5.00 4 3.50 NA
    CCG, 1 20 20 0.1 0.25 10 4.11 0.22 3.75 4.70 NA NA NA
    CCG, 1 20 20 0.1 0.50 10 4.02 0.23 3.65 4.50 NA NA NA
    CCG, 1 20 20 0.2 0.25 10 29.47 0.24 29.08 4.80 NA NA NA
    CCG, 1 20 20 0.2 0.50 10 32.24 0.26 31.82 5.00 NA NA NA
    CCG, 1 20 20 0.3 0.25 10 107.48 0.26 107.06 5.10 NA NA NA
    CCG, 1 20 20 0.3 0.50 10 98.23 0.23 97.84 4.80 NA NA NA
    CCG, 1 20 30 0.1 0.25 10 53.45 0.27 52.99 4.50 NA NA NA
    CCG, 1 20 30 0.1 0.50 10 63.26 0.30 62.77 4.40 NA NA NA
    CCG, 1 20 30 0.2 0.25 10 1907.42 0.28 1906.94 4.70 NA NA NA
    CCG, 1 20 30 0.2 0.50 10 1937.70 0.31 1937.18 4.90 NA NA NA
    CCG, 1 20 30 0.3 0.25 3 3212.86 0.33 3212.34 4.33 7 4.00 NA
    CCG, 1 20 30 0.3 0.50 4 4247.61 0.33 4247.06 5.00 6 4.00 NA
    GBD, 0 10 20 0.1 0.25 10 260.65 0.51 259.88 269.40 NA NA NA
    GBD, 0 10 20 0.1 0.50 10 264.99 0.54 264.20 282.80 NA NA NA
    GBD, 0 10 20 0.2 0.25 10 2042.25 0.56 2041.38 283.40 NA NA NA
    GBD, 0 10 20 0.2 0.50 10 2013.00 0.53 2012.21 279.80 NA NA NA
    GBD, 0 10 20 0.3 0.25 5 3874.82 0.57 3873.97 275.20 5 227.00 NA
    GBD, 0 10 20 0.3 0.50 5 4102.41 0.57 4101.56 292.40 5 226.60 NA
    GBD, 0 10 30 0.1 0.25 10 5246.78 0.63 5245.81 289.10 NA NA NA
    GBD, 0 10 30 0.1 0.50 9 4958.93 0.60 4958.00 291.11 1 285.00 NA
    GBD, 0 10 30 0.2 0.25 NA NA NA NA NA 10 24.20 NA
    GBD, 0 10 30 0.2 0.50 NA NA NA NA NA 10 24.50 NA
    GBD, 0 10 30 0.3 0.25 NA NA NA NA NA 10 10.20 NA
    GBD, 0 10 30 0.3 0.50 NA NA NA NA NA 10 10.80 NA
    GBD, 0 15 20 0.1 0.25 10 671.14 1.71 668.87 517.80 NA NA NA
    GBD, 0 15 20 0.1 0.50 10 683.38 1.78 680.99 524.40 NA NA NA
    GBD, 0 15 20 0.2 0.25 8 5185.67 1.85 5183.23 547.75 2 369.50 NA
    GBD, 0 15 20 0.2 0.50 6 4432.99 1.70 4430.74 520.17 4 437.50 NA
    GBD, 0 15 20 0.3 0.25 1 4939.39 1.63 4937.23 552.00 9 229.89 NA
    GBD, 0 15 20 0.3 0.50 NA NA NA NA NA 10 258.80 NA
    GBD, 0 15 30 0.1 0.25 1 4108.04 1.29 4106.23 473.00 9 400.11 NA
    GBD, 0 15 30 0.1 0.50 1 5399.63 1.73 5397.27 540.00 9 414.00 NA
    GBD, 0 15 30 0.2 0.25 NA NA NA NA NA 10 24.10 NA
    GBD, 0 15 30 0.2 0.50 NA NA NA NA NA 10 25.30 NA
    GBD, 0 15 30 0.3 0.25 NA NA NA NA NA 10 12.20 NA
    GBD, 0 15 30 0.3 0.50 NA NA NA NA NA 10 12.70 1
    GBD, 0 20 20 0.1 0.25 10 1311.56 5.42 1305.02 826.60 NA NA NA
    GBD, 0 20 20 0.1 0.50 10 1306.83 5.38 1300.35 818.80 NA NA NA
    GBD, 0 20 20 0.2 0.25 2 5201.39 4.32 5196.07 695.50 8 557.75 NA
    GBD, 0 20 20 0.2 0.50 3 5371.14 4.16 5366.07 745.67 7 524.43 NA
    GBD, 0 20 20 0.3 0.25 NA NA NA NA NA 10 253.70 NA
    GBD, 0 20 20 0.3 0.50 NA NA NA NA NA 10 243.20 NA
    GBD, 0 20 30 0.1 0.25 NA NA NA NA NA 10 314.80 NA
    GBD, 0 20 30 0.1 0.50 NA NA NA NA NA 10 308.60 NA
    GBD, 0 20 30 0.2 0.25 NA NA NA NA NA 10 13.20 NA
    GBD, 0 20 30 0.2 0.50 NA NA NA NA NA 10 12.00 NA
    GBD, 0 20 30 0.3 0.25 NA NA NA NA NA 10 4.90 NA
    GBD, 0 20 30 0.3 0.50 NA NA NA NA NA 10 5.20 NA
    GBD, 1 10 20 0.1 0.25 9 231.08 0.63 230.15 314.78 1 87904.00 1
    GBD, 1 10 20 0.1 0.50 9 251.93 0.69 250.93 339.67 1 87085.00 1
    GBD, 1 10 20 0.2 0.25 8 1743.32 1.00 1741.92 419.38 2 85708.00 2
    GBD, 1 10 20 0.2 0.50 10 1905.25 1.10 1903.73 445.00 NA NA NA
    GBD, 1 10 20 0.3 0.25 5 3906.72 1.04 3905.27 414.40 5 35926.40 2
    GBD, 1 10 20 0.3 0.50 7 4637.00 1.39 4635.16 511.57 3 517.33 NA
    GBD, 1 10 30 0.1 0.25 9 4630.08 0.79 4628.89 344.78 1 86737.00 1
    GBD, 1 10 30 0.1 0.50 10 5020.28 0.63 5019.31 298.00 NA NA NA
    GBD, 1 10 30 0.2 0.25 NA NA NA NA NA 10 26556.90 3
    GBD, 1 10 30 0.2 0.50 NA NA NA NA NA 10 17632.10 2
    GBD, 1 10 30 0.3 0.25 NA NA NA NA NA 10 147.80 NA
    GBD, 1 10 30 0.3 0.50 NA NA NA NA NA 10 27812.10 3
    GBD, 1 15 20 0.1 0.25 10 628.54 3.71 623.97 738.30 NA NA NA
    GBD, 1 15 20 0.1 0.50 10 632.16 3.08 628.31 731.10 NA NA NA
    GBD, 1 15 20 0.2 0.25 7 4364.68 3.24 4360.68 778.43 3 598.00 NA
    GBD, 1 15 20 0.2 0.50 5 4689.21 4.62 4683.69 882.80 5 16987.20 1
    GBD, 1 15 20 0.3 0.25 1 4839.30 3.55 4834.61 861.00 9 557.78 NA
    GBD, 1 15 20 0.3 0.50 1 5655.09 4.31 5649.87 940.00 9 577.33 NA
    GBD, 1 15 30 0.1 0.25 2 5309.26 2.59 5305.88 701.50 8 28807.88 3
    GBD, 1 15 30 0.1 0.50 1 4855.06 1.80 4852.61 592.00 9 525.56 NA
    GBD, 1 15 30 0.2 0.25 NA NA NA NA NA 10 7530.90 1
    GBD, 1 15 30 0.2 0.50 NA NA NA NA NA 10 23269.30 3
    GBD, 1 15 30 0.3 0.25 NA NA NA NA NA 10 7415.90 1
    GBD, 1 15 30 0.3 0.50 NA NA NA NA NA 10 15543.40 2
    GBD, 1 20 20 0.1 0.25 10 1216.71 9.87 1205.41 1102.10 NA NA NA
    GBD, 1 20 20 0.1 0.50 9 1272.45 10.21 1260.65 1159.11 1 68967.00 1
    GBD, 1 20 20 0.2 0.25 2 4697.51 5.30 4691.15 819.00 8 1044.50 NA
    GBD, 1 20 20 0.2 0.50 3 5650.41 17.13 5631.38 1336.67 7 9322.57 1
    GBD, 1 20 20 0.3 0.25 NA NA NA NA NA 10 793.60 NA
    GBD, 1 20 20 0.3 0.50 NA NA NA NA NA 10 692.10 NA
    GBD, 1 20 30 0.1 0.25 NA NA NA NA NA 10 5863.50 1
    GBD, 1 20 30 0.1 0.50 NA NA NA NA NA 10 474.70 NA
    GBD, 1 20 30 0.2 0.25 NA NA NA NA NA 10 392.50 NA
    GBD, 1 20 30 0.2 0.50 NA NA NA NA NA 10 13984.70 2
    GBD, 1 20 30 0.3 0.25 NA NA NA NA NA 10 13890.40 2
    GBD, 1 20 30 0.3 0.50 NA NA NA NA NA 10 13481.50 2

    Number of iterations

    for (method in unique(results$method_extended)) {
      
      p = ggplot(results[results$method_extended == method & results$unsolved == FALSE,], aes(x = iteration_count)) +
        geom_bar() +
        labs(
          title = method,
          x = "Number of iterations",
          y = "Number of instances"
        ) +
        theme_minimal()
        
      print(p) 
    }


    This document is automatically generated after every git push action on the public repository hlefebvr/hlefebvr.github.io using rmarkdown and Github Actions. This ensures the reproducibility of our data manipulation. The last compilation was performed on the 15/01/25 12:49:47.