Table of Contents

    Open methodology for “Exact approach for convex adjustable robust optimization > Resource Allocation Problem (RAP)

    Loading the data

    The raw results can be found in the file results.csv with the following columns:

    • tag: a tag which should always equal “result” used to grep the result line in the execution log file.
    • instance: the name or path of the instance.
    • n_servers: the number of servers in the instance.
    • n_clients: the number of clients in the instance.
    • Gamma: the value of \(\Gamma\) which was used.
    • deviation: the maximum deviation, in percentage, from the nominal demand.
    • time_limit: the time limit which was used when solving the instance.
    • method: the name of the method which was used to solve the instance.
    • total_time: the total time used to solve the instance.
    • master_time: the time spent solving the master problem.
    • separation_time: the time spent solving the separation problem.
    • best_bound: the best bound found.
    • iteration_count: the number of iterations.
    • fail: should be empty if the execution of the algorithm went well.

    We start by reading the file and by removing the “tag” column.

    results = read.table("./new-results.csv", header = FALSE, sep = ',')
    colnames(results) <- c("tag", "instance", "n_servers", "n_clients", "Gamma", "deviation", "time_limit", "method", "use_heuristic", "total_time", "master_time", "separation_time", "best_bound", "iteration_count", "fail")
    results$tag = NULL

    Then, we compute the percentage which \(\Gamma\) represents for the total number of clients.

    results$p = results$Gamma / results$n_clients
    results$p = ceiling(results$p / .05) * .05
    results$size = paste0("(", results$n_servers, ",", results$n_clients, "), ", results$p)
    results$method_extended = paste0(results$method, ", ", results$use_heuristic)

    We also get rid of instances which were too large to be solved by both approaches.

    results = results[!(results$n_clients == 40),]
    results = results[!(results$n_servers == 25 & results$n_clients == 25),]

    We then check that all instances were solved without issue by checking the “fail” column.

    sum(results$fail)
    ## [1] 62

    We add a tag for unsolved instances.

    time_limit = 7200
    
    if (sum(results$fail) > 0) {
      results[results$fail == TRUE,]$total_time = time_limit
    }
    
    results$unsolved = results$total_time >= time_limit | results$fail

    All in all, our result data reads.

    Performance profiles and ECDF

    We now introduce a function which plots the performance profile of our solvers over a given test set.

    add_performance_ratio = function(dataset, 
                                     criterion_column = "total_time",
                                     unsolved_column = "unsolved",
                                     instance_column = "instance",
                                     solver_column = "solver",
                                     output_column = "performance_ratio") {
      
      # Compute best score for each instance
      best = dataset %>%
        group_by(!!sym(instance_column)) %>%
        mutate(best_solver = min(!!sym(criterion_column)))
      
      # Compute performance ratio for each instance and solver
      result = best %>%
        group_by(!!sym(instance_column), !!sym(solver_column)) %>%
        mutate(!!sym(output_column) := !!sym(criterion_column) / best_solver) %>%
        ungroup()
      
      if (sum(result[,unsolved_column]) > 0) {
        result[result[,unsolved_column] == TRUE,output_column] = max(result[,output_column])
      }
    
      return (result)
    }
    
    plot_performance_profile = function(dataset,
                                        criterion_column,
                                        unsolved_column = "unsolved",
                                        instance_column = "instance",
                                        solver_column = "solver"
                                        ) {
      
      dataset_with_performance_ratios = add_performance_ratio(dataset,
                                                              criterion_column = criterion_column,
                                                              instance_column = instance_column,
                                                              solver_column = solver_column,
                                                              unsolved_column = unsolved_column)
      
      solved_dataset_with_performance_ratios = dataset_with_performance_ratios[!dataset_with_performance_ratios[,unsolved_column],]
      
      compute_performance_profile_point = function(method, data) {
        
        performance_ratios = solved_dataset_with_performance_ratios[solved_dataset_with_performance_ratios[,solver_column] == method,]$performance_ratio
        
        unscaled_performance_profile_point = ecdf(performance_ratios)(data)
        
        n_instances = sum(dataset[,solver_column] == method)
        n_solved_instances = sum(dataset[,solver_column] == method & !dataset[,unsolved_column])
        
        return( unscaled_performance_profile_point * n_solved_instances / n_instances )
      }
      
      perf = solved_dataset_with_performance_ratios %>%
        group_by(!!sym(solver_column)) %>%
        mutate(performance_profile_point = compute_performance_profile_point(unique(!!sym(solver_column)), performance_ratio))
      
      result = ggplot(data = perf, aes(x = performance_ratio, y = performance_profile_point, color = !!sym(solver_column))) +
                  geom_line()
      
      return (result)
    }
    performance_profile = plot_performance_profile(results, criterion_column = "total_time", solver_column = "method_extended") +
      labs(x = "Performance ratio", y = "% of instances") +
      scale_y_continuous(limits = c(0, 1)) +
      theme_minimal()
    print(performance_profile)

    ggsave("performance_profile.pdf", plot = performance_profile)
    ## Saving 7 x 5 in image

    As a complement, we also draw the ECDF.

    ggplot(results, aes(x = total_time, color = method_extended)) +
      stat_ecdf(geom = "step") +
      xlab("Total Time") +
      ylab("ECDF") +
      labs(title = "ECDF of Total Time by Method")  +
      scale_x_continuous(breaks = seq(0, max(results$total_time), by = 500), labels = seq(0, max(results$total_time), by = 500)) +
      theme_minimal()

    Summary table

    In this section, we create a table summarizing the outcome of our experiments.

    We start by computing average computation times over the solved instances.

    results_solved = results %>%
      filter(total_time < time_limit) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        solved = n(),
        total_time = mean(total_time),
        master_time = mean(master_time),
        separation_time = mean(separation_time),
        solved_iteration_count = mean(iteration_count),
        .groups = "drop"
      ) %>%
      ungroup()

    Then, we also consider unsolved instances: we count the number of such instances and compute the average iteration count.

    results_unsolved <- results %>%
      filter(total_time >= time_limit) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        unsolved = n(),
        unsolved_iteration_count = mean(iteration_count),
        .groups = "drop"
      ) %>%
      ungroup()
    
    results_fail <- results %>%
      filter(fail == TRUE) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        fail = n(),
        .groups = "drop"
      ) %>%
      ungroup()

    We then merge the two tables.

    final_result <- merge(results_solved, results_unsolved, by = c("method_extended", "n_servers", "n_clients", "p", "deviation"), all = TRUE)
    final_result <- merge(final_result, results_fail, by = c("method_extended", "n_servers", "n_clients", "p", "deviation"), all = TRUE)

    Here is our table.

    Summary table
    Solved instances
    Unsolved instances
    Method &#124;V_1&#124; &#124;V_2&#124; p dev Count Total Master Sepatation # Iter Count # Iter # Errors
    CCG, 0 10 20 0.1 0.25 10 2.76 0.07 2.64 2.80 NA NA NA
    CCG, 0 10 20 0.1 0.50 10 2.79 0.06 2.67 3.00 NA NA NA
    CCG, 0 10 20 0.2 0.25 10 20.97 0.06 20.85 3.00 NA NA NA
    CCG, 0 10 20 0.2 0.50 10 18.75 0.06 18.63 2.80 NA NA NA
    CCG, 0 10 20 0.3 0.25 10 64.48 0.08 64.32 3.00 NA NA NA
    CCG, 0 10 20 0.3 0.50 8 67.37 0.05 67.27 2.88 2 28.00 2
    CCG, 0 10 30 0.1 0.25 8 41.15 0.07 41.00 2.62 2 2.50 2
    CCG, 0 10 30 0.1 0.50 10 51.68 0.09 51.50 3.00 NA NA NA
    CCG, 0 10 30 0.2 0.25 9 1679.41 0.09 1679.23 3.11 1 1.00 1
    CCG, 0 10 30 0.2 0.50 9 1686.99 0.09 1686.81 3.11 1 2.00 1
    CCG, 0 10 30 0.3 0.25 4 3209.94 0.07 3209.79 2.50 6 1.83 2
    CCG, 0 10 30 0.3 0.50 4 3085.95 0.07 3085.81 2.50 6 1.67 1
    CCG, 0 15 20 0.1 0.25 10 3.60 0.08 3.44 2.80 NA NA NA
    CCG, 0 15 20 0.1 0.50 10 3.49 0.10 3.32 2.60 NA NA NA
    CCG, 0 15 20 0.2 0.25 10 30.09 0.09 29.91 2.80 NA NA NA
    CCG, 0 15 20 0.2 0.50 10 30.52 0.07 30.38 2.70 NA NA NA
    CCG, 0 15 20 0.3 0.25 10 138.92 0.11 138.73 3.00 NA NA NA
    CCG, 0 15 20 0.3 0.50 10 131.24 0.08 131.08 2.90 NA NA NA
    CCG, 0 15 30 0.1 0.25 10 50.36 0.13 50.11 3.00 NA NA NA
    CCG, 0 15 30 0.1 0.50 10 54.69 0.13 54.44 3.20 NA NA NA
    CCG, 0 15 30 0.2 0.25 10 1945.35 0.14 1945.08 3.50 NA NA NA
    CCG, 0 15 30 0.2 0.50 10 1916.98 0.13 1916.73 3.40 NA NA NA
    CCG, 0 15 30 0.3 0.25 6 4018.79 0.10 4018.58 3.17 4 1.50 NA
    CCG, 0 15 30 0.3 0.50 6 3568.58 0.11 3568.36 3.00 4 1.75 NA
    CCG, 0 20 20 0.1 0.25 10 4.34 0.11 4.14 2.80 NA NA NA
    CCG, 0 20 20 0.1 0.50 10 4.71 0.11 4.50 2.90 NA NA NA
    CCG, 0 20 20 0.2 0.25 10 37.34 0.10 37.14 2.90 NA NA NA
    CCG, 0 20 20 0.2 0.50 10 40.38 0.12 40.16 3.20 NA NA NA
    CCG, 0 20 20 0.3 0.25 10 120.73 0.10 120.53 3.00 NA NA NA
    CCG, 0 20 20 0.3 0.50 10 113.98 0.11 113.77 2.90 NA NA NA
    CCG, 0 20 30 0.1 0.25 10 65.89 0.11 65.65 2.70 NA NA NA
    CCG, 0 20 30 0.1 0.50 10 67.84 0.13 67.59 2.70 NA NA NA
    CCG, 0 20 30 0.2 0.25 10 2197.14 0.12 2196.89 2.80 NA NA NA
    CCG, 0 20 30 0.2 0.50 10 2179.94 0.13 2179.66 2.80 NA NA NA
    CCG, 0 20 30 0.3 0.25 3 4795.36 0.18 4795.05 2.67 7 1.86 NA
    CCG, 0 20 30 0.3 0.50 3 4519.99 0.13 4519.71 3.00 7 1.57 NA
    CCG, 1 10 20 0.1 0.25 10 2.64 0.13 2.42 4.50 NA NA NA
    CCG, 1 10 20 0.1 0.50 9 2.49 0.13 2.27 4.67 1 3.00 1
    CCG, 1 10 20 0.2 0.25 10 19.72 0.14 19.49 4.90 NA NA NA
    CCG, 1 10 20 0.2 0.50 10 17.30 0.12 17.11 4.70 NA NA NA
    CCG, 1 10 20 0.3 0.25 10 56.65 0.17 56.36 5.30 NA NA NA
    CCG, 1 10 20 0.3 0.50 9 56.27 0.13 56.06 4.89 1 7.00 1
    CCG, 1 10 30 0.1 0.25 8 38.82 0.19 38.51 5.12 2 1.00 2
    CCG, 1 10 30 0.1 0.50 8 44.02 0.18 43.72 5.00 2 7.00 2
    CCG, 1 10 30 0.2 0.25 8 1394.47 0.19 1394.15 4.88 2 2.50 2
    CCG, 1 10 30 0.2 0.50 8 1511.38 0.21 1511.04 5.12 2 2.00 2
    CCG, 1 10 30 0.3 0.25 3 3276.78 0.15 3276.52 4.33 7 3.29 2
    CCG, 1 10 30 0.3 0.50 2 3263.23 0.16 3262.95 4.50 8 3.62 5
    CCG, 1 15 20 0.1 0.25 10 3.34 0.18 3.04 4.70 NA NA NA
    CCG, 1 15 20 0.1 0.50 10 3.27 0.16 2.99 4.50 NA NA NA
    CCG, 1 15 20 0.2 0.25 10 26.58 0.18 26.28 4.70 NA NA NA
    CCG, 1 15 20 0.2 0.50 10 26.20 0.16 25.93 4.50 NA NA NA
    CCG, 1 15 20 0.3 0.25 10 116.75 0.22 116.40 5.20 NA NA NA
    CCG, 1 15 20 0.3 0.50 10 108.70 0.19 108.39 4.80 NA NA NA
    CCG, 1 15 30 0.1 0.25 10 44.96 0.28 44.51 5.00 NA NA NA
    CCG, 1 15 30 0.1 0.50 10 49.76 0.25 49.34 4.90 NA NA NA
    CCG, 1 15 30 0.2 0.25 9 1536.86 0.33 1536.34 5.67 1 6.00 NA
    CCG, 1 15 30 0.2 0.50 10 1677.56 0.33 1677.06 5.40 NA NA NA
    CCG, 1 15 30 0.3 0.25 7 3711.00 0.27 3710.57 4.71 3 3.67 NA
    CCG, 1 15 30 0.3 0.50 6 3476.93 0.25 3476.52 5.00 4 3.50 NA
    CCG, 1 20 20 0.1 0.25 10 4.11 0.22 3.75 4.70 NA NA NA
    CCG, 1 20 20 0.1 0.50 10 4.02 0.23 3.65 4.50 NA NA NA
    CCG, 1 20 20 0.2 0.25 10 29.47 0.24 29.08 4.80 NA NA NA
    CCG, 1 20 20 0.2 0.50 10 32.24 0.26 31.82 5.00 NA NA NA
    CCG, 1 20 20 0.3 0.25 10 107.48 0.26 107.06 5.10 NA NA NA
    CCG, 1 20 20 0.3 0.50 10 98.23 0.23 97.84 4.80 NA NA NA
    CCG, 1 20 30 0.1 0.25 10 53.45 0.27 52.99 4.50 NA NA NA
    CCG, 1 20 30 0.1 0.50 10 63.26 0.30 62.77 4.40 NA NA NA
    CCG, 1 20 30 0.2 0.25 10 1907.42 0.28 1906.94 4.70 NA NA NA
    CCG, 1 20 30 0.2 0.50 10 1937.70 0.31 1937.18 4.90 NA NA NA
    CCG, 1 20 30 0.3 0.25 3 3212.86 0.33 3212.34 4.33 7 4.00 NA
    CCG, 1 20 30 0.3 0.50 4 4247.61 0.33 4247.06 5.00 6 4.00 NA
    GBD, 0 10 20 0.1 0.25 10 260.65 0.51 259.88 269.40 NA NA NA
    GBD, 0 10 20 0.1 0.50 10 264.99 0.54 264.20 282.80 NA NA NA
    GBD, 0 10 20 0.2 0.25 10 2042.25 0.56 2041.38 283.40 NA NA NA
    GBD, 0 10 20 0.2 0.50 10 2013.00 0.53 2012.21 279.80 NA NA NA
    GBD, 0 10 20 0.3 0.25 5 3874.82 0.57 3873.97 275.20 5 227.00 NA
    GBD, 0 10 20 0.3 0.50 5 4102.41 0.57 4101.56 292.40 5 226.60 NA
    GBD, 0 10 30 0.1 0.25 10 5246.78 0.63 5245.81 289.10 NA NA NA
    GBD, 0 10 30 0.1 0.50 9 4958.93 0.60 4958.00 291.11 1 285.00 NA
    GBD, 0 10 30 0.2 0.25 NA NA NA NA NA 10 24.20 NA
    GBD, 0 10 30 0.2 0.50 NA NA NA NA NA 10 24.50 NA
    GBD, 0 10 30 0.3 0.25 NA NA NA NA NA 10 10.20 NA
    GBD, 0 10 30 0.3 0.50 NA NA NA NA NA 10 10.80 NA
    GBD, 0 15 20 0.1 0.25 10 671.14 1.71 668.87 517.80 NA NA NA
    GBD, 0 15 20 0.1 0.50 10 683.38 1.78 680.99 524.40 NA NA NA
    GBD, 0 15 20 0.2 0.25 8 5185.67 1.85 5183.23 547.75 2 369.50 NA
    GBD, 0 15 20 0.2 0.50 6 4432.99 1.70 4430.74 520.17 4 437.50 NA
    GBD, 0 15 20 0.3 0.25 1 4939.39 1.63 4937.23 552.00 9 229.89 NA
    GBD, 0 15 20 0.3 0.50 NA NA NA NA NA 10 258.80 NA
    GBD, 0 15 30 0.1 0.25 1 4108.04 1.29 4106.23 473.00 9 400.11 NA
    GBD, 0 15 30 0.1 0.50 1 5399.63 1.73 5397.27 540.00 9 414.00 NA
    GBD, 0 15 30 0.2 0.25 NA NA NA NA NA 10 24.10 NA
    GBD, 0 15 30 0.2 0.50 NA NA NA NA NA 10 25.30 NA
    GBD, 0 15 30 0.3 0.25 NA NA NA NA NA 10 12.20 NA
    GBD, 0 15 30 0.3 0.50 NA NA NA NA NA 10 12.70 1
    GBD, 0 20 20 0.1 0.25 10 1311.56 5.42 1305.02 826.60 NA NA NA
    GBD, 0 20 20 0.1 0.50 10 1306.83 5.38 1300.35 818.80 NA NA NA
    GBD, 0 20 20 0.2 0.25 2 5201.39 4.32 5196.07 695.50 8 557.75 NA
    GBD, 0 20 20 0.2 0.50 3 5371.14 4.16 5366.07 745.67 7 524.43 NA
    GBD, 0 20 20 0.3 0.25 NA NA NA NA NA 10 253.70 NA
    GBD, 0 20 20 0.3 0.50 NA NA NA NA NA 10 243.20 NA
    GBD, 0 20 30 0.1 0.25 NA NA NA NA NA 10 314.80 NA
    GBD, 0 20 30 0.1 0.50 NA NA NA NA NA 10 308.60 NA
    GBD, 0 20 30 0.2 0.25 NA NA NA NA NA 10 13.20 NA
    GBD, 0 20 30 0.2 0.50 NA NA NA NA NA 10 12.00 NA
    GBD, 0 20 30 0.3 0.25 NA NA NA NA NA 10 4.90 NA
    GBD, 0 20 30 0.3 0.50 NA NA NA NA NA 10 5.20 NA
    GBD, 1 10 20 0.1 0.25 9 231.08 0.63 230.15 314.78 1 87904.00 1
    GBD, 1 10 20 0.1 0.50 9 251.93 0.69 250.93 339.67 1 87085.00 1
    GBD, 1 10 20 0.2 0.25 8 1743.32 1.00 1741.92 419.38 2 85708.00 2
    GBD, 1 10 20 0.2 0.50 10 1905.25 1.10 1903.73 445.00 NA NA NA
    GBD, 1 10 20 0.3 0.25 5 3906.72 1.04 3905.27 414.40 5 35926.40 2
    GBD, 1 10 20 0.3 0.50 7 4637.00 1.39 4635.16 511.57 3 517.33 NA
    GBD, 1 10 30 0.1 0.25 9 4630.08 0.79 4628.89 344.78 1 86737.00 1
    GBD, 1 10 30 0.1 0.50 10 5020.28 0.63 5019.31 298.00 NA NA NA
    GBD, 1 10 30 0.2 0.25 NA NA NA NA NA 10 26556.90 3
    GBD, 1 10 30 0.2 0.50 NA NA NA NA NA 10 17632.10 2
    GBD, 1 10 30 0.3 0.25 NA NA NA NA NA 10 147.80 NA
    GBD, 1 10 30 0.3 0.50 NA NA NA NA NA 10 27812.10 3
    GBD, 1 15 20 0.1 0.25 10 628.54 3.71 623.97 738.30 NA NA NA
    GBD, 1 15 20 0.1 0.50 10 632.16 3.08 628.31 731.10 NA NA NA
    GBD, 1 15 20 0.2 0.25 7 4364.68 3.24 4360.68 778.43 3 598.00 NA
    GBD, 1 15 20 0.2 0.50 5 4689.21 4.62 4683.69 882.80 5 16987.20 1
    GBD, 1 15 20 0.3 0.25 1 4839.30 3.55 4834.61 861.00 9 557.78 NA
    GBD, 1 15 20 0.3 0.50 1 5655.09 4.31 5649.87 940.00 9 577.33 NA
    GBD, 1 15 30 0.1 0.25 2 5309.26 2.59 5305.88 701.50 8 28807.88 3
    GBD, 1 15 30 0.1 0.50 1 4855.06 1.80 4852.61 592.00 9 525.56 NA
    GBD, 1 15 30 0.2 0.25 NA NA NA NA NA 10 7530.90 1
    GBD, 1 15 30 0.2 0.50 NA NA NA NA NA 10 23269.30 3
    GBD, 1 15 30 0.3 0.25 NA NA NA NA NA 10 7415.90 1
    GBD, 1 15 30 0.3 0.50 NA NA NA NA NA 10 15543.40 2
    GBD, 1 20 20 0.1 0.25 10 1216.71 9.87 1205.41 1102.10 NA NA NA
    GBD, 1 20 20 0.1 0.50 9 1272.45 10.21 1260.65 1159.11 1 68967.00 1
    GBD, 1 20 20 0.2 0.25 2 4697.51 5.30 4691.15 819.00 8 1044.50 NA
    GBD, 1 20 20 0.2 0.50 3 5650.41 17.13 5631.38 1336.67 7 9322.57 1
    GBD, 1 20 20 0.3 0.25 NA NA NA NA NA 10 793.60 NA
    GBD, 1 20 20 0.3 0.50 NA NA NA NA NA 10 692.10 NA
    GBD, 1 20 30 0.1 0.25 NA NA NA NA NA 10 5863.50 1
    GBD, 1 20 30 0.1 0.50 NA NA NA NA NA 10 474.70 NA
    GBD, 1 20 30 0.2 0.25 NA NA NA NA NA 10 392.50 NA
    GBD, 1 20 30 0.2 0.50 NA NA NA NA NA 10 13984.70 2
    GBD, 1 20 30 0.3 0.25 NA NA NA NA NA 10 13890.40 2
    GBD, 1 20 30 0.3 0.50 NA NA NA NA NA 10 13481.50 2

    Revision

    Reading Additional Results for the Revision

    We start by reading the file and by removing the “tag” column.

    results_rev = read.table("./results-rev.csv", header = FALSE, sep = ',')
    colnames(results_rev) <- c("tag", "instance", "n_servers", "n_clients", "Gamma", "deviation", "time_limit", "method", "use_heuristic", "total_time", "master_time", "separation_time", "best_bound", "iteration_count", "fail", "use_bilevel_separation", "use_budgeted_unc")
    results = read.table("./new-results.csv", header = FALSE, sep = ',')
    colnames(results) <- c("tag", "instance", "n_servers", "n_clients", "Gamma", "deviation", "time_limit", "method", "use_heuristic", "total_time", "master_time", "separation_time", "best_bound", "iteration_count", "fail")
    results$use_bilevel_separation = 0
    results$use_budgeted_unc = 1
    all_results = rbind(results, results_rev)
    
    all_results = all_results %>% filter(deviation == .25 & method == "CCG")

    Then, we compute the percentage which \(\Gamma\) represents for the total number of clients.

    all_results$p = all_results$Gamma / all_results$n_clients
    all_results$p = ceiling(all_results$p / .05) * .05
    all_results$size = paste0("(", all_results$n_servers, ",", all_results$n_clients, "), ", all_results$p)
    all_results$method_extended = paste0(all_results$method, ", ", ifelse(all_results$use_heuristic, "heuristic, ", ""), ifelse(all_results$use_bilevel_separation, "KKT", "0-1 mapping"))
    
    paged_table(results_rev %>% filter(fail == 1 & total_time < time_limit))
    paged_table(results_rev %>% filter(fail == 0 & deviation == .25))
    if (sum(all_results$fail) > 0) {
      all_results[all_results$fail == TRUE,]$total_time = time_limit
    }
    
    all_results$unsolved = all_results$total_time >= time_limit | all_results$fail
    budgeted_unc_results = all_results %>% filter(use_budgeted_unc == 1 & method == "CCG")
    
    
    ggplot(budgeted_unc_results, aes(x = total_time, color = method_extended)) +
      stat_ecdf(geom = "step", linewidth = 1) +
      labs(title = "ECDF Plot", x = "Values", y = "ECDF") +
      theme_minimal()

    performance_profile = plot_performance_profile(budgeted_unc_results, criterion_column = "total_time", solver_column = "method_extended") +
      labs(x = "Performance ratio", y = "% of instances") +
      scale_y_continuous(limits = c(0, 1)) +
      theme_minimal()
    
    print(performance_profile)

    knapsack_unc_results = all_results %>% filter(method == "CCG" & use_budgeted_unc == 0)
    
    ggplot(knapsack_unc_results, aes(x = total_time, color = method_extended)) +
      stat_ecdf(geom = "step", size = 1) +
      labs(title = "ECDF Plot", x = "Values", y = "ECDF") +
      facet_wrap(~p) +
      theme_minimal()
    ## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
    ## ℹ Please use `linewidth` instead.
    ## This warning is displayed once every 8 hours.
    ## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
    ## generated.

    Summary table

    In this section, we create a table summarizing the outcome of our experiments.

    We start by computing average computation times over the solved instances.

    results_solved = knapsack_unc_results %>%
      filter(total_time < time_limit) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        solved = n(),
        total_time = mean(total_time),
        master_time = mean(master_time),
        separation_time = mean(separation_time),
        solved_iteration_count = mean(iteration_count),
        .groups = "drop"
      ) %>%
      ungroup()

    Then, we also consider unsolved instances: we count the number of such instances and compute the average iteration count.

    results_unsolved <- knapsack_unc_results %>%
      filter(total_time >= time_limit) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        unsolved = n(),
        unsolved_iteration_count = mean(iteration_count),
        .groups = "drop"
      ) %>%
      ungroup()
    
    results_fail <- knapsack_unc_results %>%
      filter(fail == TRUE) %>%
      group_by(method_extended, n_servers, n_clients, p, deviation) %>%
      summarize(
        fail = n(),
        .groups = "drop"
      ) %>%
      ungroup()

    We then merge the two tables.

    final_result <- merge(results_solved, results_unsolved, by = c("method_extended", "n_servers", "n_clients", "p", "deviation"), all = TRUE)
    final_result <- merge(final_result, results_fail, by = c("method_extended", "n_servers", "n_clients", "p", "deviation"), all = TRUE)

    Here is our table.

    Summary table
    Solved instances
    Unsolved instances
    Method &#124;V_1&#124; &#124;V_2&#124; p dev Count Total Master Sepatation # Iter Count # Iter # Errors
    CCG, KKT 10 20 0.1 0.25 10 1238.42 0.10 1238.27 2.50 NA NA NA
    CCG, KKT 10 20 0.2 0.25 3 4382.48 0.21 4382.19 4.00 7 1.71 NA
    CCG, KKT 10 20 0.3 0.25 NA NA NA NA NA 10 1.50 NA
    CCG, KKT 10 30 0.1 0.25 NA NA NA NA NA 10 0.10 NA
    CCG, KKT 10 30 0.2 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 10 30 0.3 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 10 40 0.1 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 10 40 0.2 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 10 40 0.3 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 15 20 0.1 0.25 8 2776.59 0.07 2776.46 3.00 2 1.50 NA
    CCG, KKT 15 20 0.2 0.25 2 4688.58 0.07 4688.45 3.00 8 1.75 NA
    CCG, KKT 15 20 0.3 0.25 NA NA NA NA NA 10 1.10 NA
    CCG, KKT 15 30 0.1 0.25 NA NA NA NA NA 10 0.30 NA
    CCG, KKT 15 30 0.2 0.25 NA NA NA NA NA 10 0.10 NA
    CCG, KKT 15 30 0.3 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 15 40 0.1 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 15 40 0.2 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 15 40 0.3 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 20 20 0.1 0.25 6 3058.98 0.11 3058.79 3.33 4 2.50 NA
    CCG, KKT 20 20 0.2 0.25 NA NA NA NA NA 10 1.10 NA
    CCG, KKT 20 20 0.3 0.25 NA NA NA NA NA 10 1.10 NA
    CCG, KKT 20 30 0.1 0.25 NA NA NA NA NA 10 0.20 NA
    CCG, KKT 20 30 0.2 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 20 30 0.3 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 20 40 0.1 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 20 40 0.2 0.25 NA NA NA NA NA 10 0.00 NA
    CCG, KKT 20 40 0.3 0.25 NA NA NA NA NA 10 0.00 NA

    This document is automatically generated after every git push action on the public repository hlefebvr/hlefebvr.github.io using rmarkdown and Github Actions. This ensures the reproducibility of our data manipulation. The last compilation was performed on the 20/03/25 15:09:16.