Table of content

    Statistics on Bruxelles Marathon (2023)

    We used the data set from the official Brussels Marathon website provided by ACN-timing. Raw results in XML format can be accessed here. Then, we preprocessed the data to convert it into a csv file. No data was removed.

    data = read.csv("results.csv", header = FALSE)
    colnames(data) = c("rank", "bib", "name", "nat_flag", "10km_time_in_ms", "21_1km_time_in_ms", "30km_time_in_ms", "checkpoint", "time", "estimation", "avg", "category_rank", "category")

    Cleaning the data

    First, we add a column for gender.

    data$gender <- ifelse(substr(data$category, 1, 1) == "F", "female", "male")

    The data set has ranks as strings with trailing points. We make them integers.

    data$rank = as.integer(data$rank)
    ## Warning: NAs introduced by coercion

    Looking at the official results, people with ranking greater than 1420 have missing entries and strange finish times (e.g., below world record). We eliminate these rows (20 rows).

    data = data[data$rank < 1420,]

    We also clean the data according to the following filter.

    filter = data$rank == "DSQ" | is.na(data$rank) | is.na(data$time) | data$time == ""
    
    data = data[!filter,]

    Finally, we convert the given times into seconds so that statistics can be easily computed.

    # Convert the TIME column to POSIXlt
    data$time_posix = as.POSIXlt(data$time, format = "%H:%M:%S")
    
    # Extract hours, minutes, and seconds
    data$hours = data$time_posix$hour
    data$minutes = data$time_posix$min
    data$seconds = data$time_posix$sec
    
    # Calculate total time in seconds
    data$time_seconds = data$hours * 3600 + data$minutes * 60 + data$seconds
    Our cleanned data set is:

    Histogram of finish times

    # Create a histogram of TIME_S
    ggplot(data, aes(x = time_seconds)) +
      geom_histogram(binwidth = 60, fill = "blue", color = "blue") + # binwidth in seconds
      labs(
        title = "Distribution of TIME_S",
        x = "Time in Seconds",
        y = "Frequency"
      ) +
      scale_x_continuous(
        breaks = seq(0, max(data$time_seconds), by = 3600), # Label every hour
        labels = function(x) {
          h <- floor(x / 3600)
          m <- floor((x %% 3600) / 60)
          s <- x %% 60
          sprintf("%02d:%02d:%02d", h, m, s)
        }
      )+
      facet_grid(. ~ gender)

    Empirical Cumulative Distribution Function (ECDF)

    major_breaks <- seq(0, 21600, by = 60 * 60 / 2) # Major ticks every hour
    minor_breaks <- seq(0, 21600, by = 5 * 60)  # Minor ticks every 10 minutes
    
    # Create an ECDF plot of TIME_S with formatted x-axis labels
    ggplot(data, aes(x = time_seconds, color = gender)) +
      geom_step(stat = "ecdf") +
      labs(
        title = "ECDF of TIME_S",
        x = "Time (H:M:S)",
        y = "Cumulative Probability"
      ) +
      scale_x_continuous(
        breaks = major_breaks,
        minor_breaks = minor_breaks,
        labels = function(x) {
          h <- floor(x / 3600)
          m <- floor((x %% 3600) / 60)
          sprintf("%02d:%02d", h, m)
        }
      ) +
      scale_y_continuous(
        breaks = seq(0, 1, by = .1)
      ) +
      coord_cartesian(xlim = c(2.4 * 3600, 6 * 3600)) 

    # Convert time_seconds to ECDF for each gender
    ecdf_male <- ecdf(data[data$gender == "male",]$time_seconds)
    ecdf_female <- ecdf(data[data$gender == "female",]$time_seconds)
    
    # Create a sequence of probability values from 0 to 1
    times <- seq(2 * 3600 + 15 * 60, max(data[data$gender == "male",]$time_seconds), by = 5 * 60)  # Adjust the step as needed
    times_str <- sprintf("%02d:%02d:00", times %/% 3600, (times %% 3600) %/% 60)
    
    # Create a data frame with ECDF values for each gender
    ecdf_table <- data.frame(
      times = times_str,
      male = ecdf_male(times) * 100,
      female = ecdf_female(times) * 100
    )
    
    knitr::kable(ecdf_table, 
                   digits = c(0, 2, 2), 
                   col.names = c("Time", "Male", "Female")
                 ) %>%
          kable_classic()
    Time Male Female
    02:15:00 0.08 0.00
    02:20:00 0.34 0.00
    02:25:00 0.59 0.00
    02:30:00 0.75 0.00
    02:35:00 0.92 0.44
    02:40:00 1.01 0.88
    02:45:00 1.42 1.33
    02:50:00 1.93 1.33
    02:55:00 2.35 1.77
    03:00:00 3.27 1.77
    03:05:00 3.69 1.77
    03:10:00 4.78 2.21
    03:15:00 6.79 2.21
    03:20:00 8.80 3.54
    03:25:00 11.15 4.87
    03:30:00 14.08 6.19
    03:35:00 17.10 7.52
    03:40:00 20.54 8.85
    03:45:00 24.98 12.83
    03:50:00 29.67 15.93
    03:55:00 35.37 20.80
    04:00:00 41.99 24.78
    04:05:00 47.11 26.99
    04:10:00 51.72 32.30
    04:15:00 57.42 41.15
    04:20:00 62.03 47.35
    04:25:00 66.55 51.33
    04:30:00 72.51 57.52
    04:35:00 76.78 61.06
    04:40:00 79.46 65.49
    04:45:00 83.32 72.12
    04:50:00 86.59 77.43
    04:55:00 89.35 80.09
    05:00:00 92.29 85.40
    05:05:00 94.13 87.61
    05:10:00 95.31 89.38
    05:15:00 96.40 92.48
    05:20:00 97.23 93.81
    05:25:00 97.74 96.46
    05:30:00 98.41 98.23
    05:35:00 99.16 98.23
    05:40:00 99.66 99.12
    05:45:00 99.92 100.00

    This document is automatically generated after every git push action on the public repository hlefebvr/hlefebvr.github.io using rmarkdown and Github Actions. This ensures the reproducibility of our data manipulation. The last compilation was performed on the 18/07/24 10:43:31.